Application of Random Forest Algorithm To Classify Credit Status of KPR Customers at Bank BTN Based on Machine Learning

Maysade Fitri, Ahmad Sobri, Fido Rizki

Abstract


In the banking sector, this study is very suitable for determining and improving accuracy and determining credit status classification. This study aims to apply the Exploratory Data Analysis (EDA) method in supporting credit status classification at PT. Bank Tabungan Negara KCP Lubuklinggau Persero Tbk. Exploratory Data Analysis (EDA) as data exploration and Machine Learning Algorithms such as Random Forest as modeling in determining classification. The results show that the Exploratory Data Analysis (EDA) method successfully determines data patterns, while Random Forest in modeling achieves accuracy, recall, Precision, F1-Score of 100% in predicting the credit status of KPR customers. This method is expected to be useful in making decisions on more accurate credit status by the bank.

Keywords


EDA, Random Forest, Credit Classification, KPR, Machine Learning

Full Text:

PDF

References


Andrew Murphy. (2019). No Title. https://radiopaedia.org/articles/random-forest-machine-learning?lang=us

Aryanti, D., & Setiawan, J. (2019). Visualisasi Data Penjualan dan Produksi PT Nitto Alam Indonesia Periode 2014-2018. Ultima InfoSys, 9(2), 86–91. https://doi.org/10.31937/si.v9i2.991

Budianti, L., & Suliadi. (2022). Metode Weighted Random Forest dalam Klasifikasi Prediksi Kelangsungan Hidup Pasien Gagal Jantung. Bandung Conference Series: Statistics, 2(2), 103–110. https://doi.org/10.29313/bcss.v2i2.3318

Exploratory Data Analysis (EDA) for Data Science and ML. (n.d.). https://cognitiveclass.ai/courses/exploratory-data-analysis-eda-for-data-science-and-ml#about-course

Liaw, A., & Wiener, M. (2018). Klasifikasi dan Regresi oleh RandomForest. R News, 2(3), 18–22.

Ningsih, P. T. S., Gusvarizon, M., & Hermawan, R. (2022). Analisis Sistem Pendeteksi Penipuan Transaksi Kartu Kredit dengan Algoritma Machine Learning. Jurnal Teknologi Informatika Dan Komputer, 8(2), 386–401. https://doi.org/10.37012/jtik.v8i2.130




DOI: https://doi.org/10.31294/jtk.v11i1.25261

Copyright (c) 2025 Maysade Fitri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN: 2442-2436 (print), and 2550-0120


 dipublikasikan oleh LPPM Universitas Bina Sarana Informatika Jakarta

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License