Application of Prediction Models Based on Moving Average, Exponential Smoothing and Trend Analysis on Indonesian Palm Oil Exports

Taufik Baidawi, Muhammad Ridwan Effendi, Heri Kuswara, Siti Wardah, Kursehi Falgenti

Abstract


Palm oil is a strategic commodity for Indonesia, significantly contributing to state revenue and foreign exchange. In 2022, its export value reached USD 33.7 billion. Accurate forecasting of palm oil exports is crucial due to fluctuating market conditions influenced by global demand, prices, and government policies. However, existing studies on forecasting Indonesian palm oil exports are limited, with most research focusing on other agricultural commodities. This study applies Moving Average, Exponential Smoothing, and Trend Analysis methods to forecast palm oil exports and determine the most accurate method. The results show that the Trend Analysis method yields the lowest Mean Absolute Deviation (MAD = 18505.67) and Mean Squared Error (MSE = 436747200), indicating superior accuracy compared to the other methods. The findings suggest that Trend Analysis can provide stakeholders government, companies, and farmers with valuable insights for strategic decision-making. This research contributes to the development of more precise forecasting models, supporting Indonesia's palm oil industry in maintaining its global competitiveness.

Keywords


Prediction, Palm Oil, Moving Average, Exponential Smoothing, Trend Analysis

Full Text:

PDF

References


Airlangga, G., Rachmat, A., & Lapihu, D. (2019). Comparison of exponential smoothing and neural network method to forecast rice production in Indonesia. Telkomnika (Telecommunication Computing Electronics and Control), 17(3), 1367–1375.

Arsyad, M., Amiruddin, A., Suharno, S., & Jahroh, S. (2020). Competitiveness of palm oil products in international trade: an analysis between Indonesia and Malaysia. Caraka Tani: Journal of Sustainable Agriculture, 35(2), 157–167.

Ata, A. (2024). A Composite Forecast Approach for Market Demand Using Regression with Simulation to Predict the Palm Oil Market.

Aziz, A., Armaz, E., Nazori, M., Rosmanidar, E., Mutia, A., Anita, E., Fusfita, N., Rahma, S., Subhan, M., & Nofriza, E. (2024). An Overview of the Palm Oil Plantation Industry and its Social Impact on Local Communities in Jambi Province, Sumatra, Indonesia. International Journal of Economics (IJEC), 3(2).

Cerqueira, V., Torgo, L., & Mozetič, I. (2020). Evaluating time series forecasting models: An empirical study on performance estimation methods. Machine Learning, 109(11), 1997–2028.

Ensafi, Y., Amin, S. H., Zhang, G., & Shah, B. (2022). Time-series forecasting of seasonal items sales using machine learning–A comparative analysis. International Journal of Information Management Data Insights, 2(1), 100058.

Huda, K., Wibowo, C. E., & Gunawan, V. (2023). Implementation of time series forecasting with Box Jenkins ARIMA method on wood production of Indonesian forests. AIP Conference Proceedings, 2738(1).

Hudisasmoko, A. (2023). Trend Analysis of Land Change in the Kreo Sub-watershed Jatibarang Reservoir, Semarang City. Nusantara Science and Technology Proceedings, 14–20.

Iheanacho, A. (2020). Forecasting and its Effect on Organizational Performance. Contemporary Journal of Management, 1(1), 41–53.

Juliana, L. J. L., Lubis, A. P., & Lubis, I. A. (2023). Implementation of the Least Square Method to Forecast Cement Sales. Jurnal Ipteks Terapan, 17(1), 131–137.

Khan, N., Kamaruddin, M. A., Sheikh, U. U., Yusup, Y., & Bakht, M. P. (2021). Oil palm and machine learning: Reviewing one decade of ideas, innovations, applications, and gaps. Agriculture, 11(9), 832.

Khatiwada, D., Palmén, C., & Silveira, S. (2021). Evaluating the palm oil demand in Indonesia: production trends, yields, and emerging issues. Biofuels, 12(2), 135–147.

Koutsandreas, D., Spiliotis, E., Petropoulos, F., & Assimakopoulos, V. (2022). On the selection of forecasting accuracy measures. Journal of the Operational Research Society, 73(5), 937–954.

Kumar, V., & Garg, M. L. (2018). Predictive analytics: a review of trends and techniques. International Journal of Computer Applications, 182(1), 31–37.

Marpaung, T. J., Siringoringo, Y. B., Marpaung, R. G., & Marpaung, J. L. (2023). Double Exponential Smoothing Method to Forecast the Production of Tembakau in North Sumatra. Journal of Mathematics Technology and Education, 2(2), 114–125.

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons.

Nur, M., Rizki, E. N., Karim, A. A., & Sari, R. K. (2024). Peramalan Jumlah Penumpang Domestik Pada Bandar Udara Sultan Syarif Kasim II Dengan Menggunakan Metode Winter’s Exponential Smoothing. Jurnal Teknologi Dan Manajemen Industri Terapan, 3(I), 57–66.

Ramadhani, F. D., & Ardhiansyah, M. (2022). Analisis Perbandingan Metode Single Exponential Smoothing dan Trend Parabolik Untuk Prediksi Penjualan Minuman:(Studi Kasus: CV. Al Barokah). Scientia Sacra: Jurnal Sains, Teknologi Dan Masyarakat, 2(3), 349–358.

Restyana, A., Savitri, L., Laili, N. F., & Probosiwi, N. (2021). Analysis of drug forecasting with single moving average and single exponential smoothing approach (Case Study in Jombang Regency 2017-2019). Journal of Physics: Conference Series, 1899(1), 12100.

Rosyadi, F. H., Mulyo, J. H., Perwitasari, H., & Darwanto, D. H. (2021). Export intensity and competitiveness of Indonesia’s crude palm oil to main destination countries. Agricultural Economics (Czech Republic), 67(5), 189–199.

Sari, R. P. (2023). Prediksi Jumlah Kejahatan di Indonesia Tahun 2023 Dengan Metode Autoregressive Integrate Moving Average (ARIMA). Jurnal GAMMA-PI, 5(2), 60–67.

Shiferaw, Y. A. (2023). An analysis of East African tea crop prices using the MCMC approach to estimate volatility and forecast the in-sample value-at-risk. Scientific African, 19, e01442.

Shukla, M., & Tiwari, M. K. (2017). Big-data analytics framework for incorporating smallholders in sustainable palm oil production. Production Planning & Control, 28(16), 1365–1377.

Singh, V. P., Singh, R., Paul, P. K., Bisht, D. S., & Gaur, S. (2024). Time series analysis. In Hydrological Processes Modelling and Data Analysis: A Primer (pp. 35–71). Springer.

Siti Wardah, T. B. (2024). Peramalan Bahan Baku Kelapa Dengan Moving Average. Jurnal Perangkat Lunak, Volume 6,Nomor 2 Peramalan Bahan Baku Kelapa Dengan Moving Average, Exponential Smooting dan Trend Analysis, 190–197.

Tandra, H., Suroso, A. I., Syaukat, Y., & Najib, M. (2022). The determinants of competitiveness in global palm oil trade. Economies, 10(6), 132.




DOI: https://doi.org/10.31294/jtk.v11i1.25194

Copyright (c) 2025 Muhammad Ridwan Effendi, Heri Kuswara, Siti Wardah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN: 2442-2436 (print), and 2550-0120


 dipublikasikan oleh LPPM Universitas Bina Sarana Informatika Jakarta

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License