Penerapan Metode Algoritma C5.0 Untuk Klasifikasi Pemberian Kredit KUR UMKM Pada PT Pegadaian

Hilda Amalia, Moranta Timotius, Sriyadi Sriyadi, Yunita Yunita, Achmad Baroqah Pohan

Abstract


KUR or known as People's Business Credit is a government program which aims to provide business assistance to small people, namely those who own businesses (MSMEs). Providing Credit can also refer to a situation where one party provides money or services to another party. Every time you give credit to a customer, there is a possibility of default. Default conditions can be detrimental to those who provide credit. This default condition, apart from being detrimental to the credit provider company, also has an impact on the company's performance. To overcome the risk of default, it is important for credit companies to carry out careful credit analysis, provide financial education to customers, and have an effective strategy. In addition, monitoring and updating customers' financial conditions regularly are also an important step in preventing payment failures. Data mining is a method for finding knowledge from piles of data. In this research, data mining is used to overcome the problem of default risk on business credit worthiness by involving data to identify patterns and factors that can predict potential default. By using the natural 5.0 algorithm method, data processing can be used to automate most of the credit assessment process which can save time and costs. The application of data mining in pawnshops allows more precise decisions to be made based on historical data and in-depth analysis, thereby helping to reduce risk and increase operational efficiency at credit granting companies. The application of the C5.0 Algorithm method helps identify critical factors that influence the feasibility of MSME sharia currency, such as customer profiles, business characteristics and financial performance. The results of the feasibility evaluation show that the majority of MSMEs receive funding through sharia currency.

Keywords


Credit, Data Mining, Algorithm 5.0

Full Text:

PDF

References


Amalia, H., Rahmadanti, R., Syaiin, A., Salsabila, S., Yunita, & Sriyadi. (2023). Prediksi Resiko Kesehatan Ibu Hamil Dengan Menggunakan Metode Decision Tree. Jurnal Swabumi, 48-53.

Amalia, H., Timotius, M., Sriyadi, Yunita, & Pohan, A. B. (2024). Laporan Penelitian Mandiri. Jakarta.

Desyanita, L., & Wibowo, A. (2020). Pemodelan Sistem Prediksi Kelayakan Pengajuan Kredit Kepemilikan Rumah Dengan Metode C4.5 Dan Naive Bayes. Jurnal Ilmiah Elektronika dan Komputer, 10-22.

Hidayatulloh, T., Fajria, A., Lestari, R. N., & Nufus, N. S. (2022). Algoritma C4.5 Untuk Menentukan Kelayakan Pemberian Kredit. Jurnal LARIK (LADANG ILMU KOMPUTER), 66-74.

Librado, D., & Nasyuha, A. H. (2023). Penerapan Data Mining Untuk Klasifikasi Penerima Kredit Dengan Perbandingan Algoritma Naïve Bayes dan Algoritma C4.5. Jurnal Media Informatika Budidarma, 1952-1961.

Manurung, M. A. (2020). Implementasi Data Mining Algoritma C5.0 Dalam Sertifikasi Pengguna Tanda Balai Riset . Journal of Computer System and Informatics (JoSYC), 199-206.

Nawary, A. P., & Kurniati. (2021). Penerapan Data Mining Dalam memprediksi Kelancaran Kredit Nasabah Menggunakan Algoritma C4.5 (Studi Kasus pada PT. Astra Internasiona (AUTO 2000)). Bina Darma Conference, 1041-1047.

Santoso, T. B., & Sekardiana, D. (2019). Penerapan Algoritma C4.5 Untuk Penentuan Kelayakan Pemberian Kredit. Jurnal Algoritma,Logika dan Komputasi, 130-137.

Sucitra, A., & Latifah, F. N. (2023). Strategi Bauran Pemasaran 4P Dalam Produk Pembiayaan KUR Syariah Di Pegadaian Syariah. Jurnal Tabarru, 371-368.

Triayudi, A., & Sumiati. (2022). Implementasi Klasifikasi Data Mining Untuk Penentuan Kelayakan Pemberian Kredit dengan Menggunakan Algoritma Naïve Bayes. Jurnal Sistem Komputer dan Informatika , 240-244.




DOI: https://doi.org/10.31294/jtk.v10i2.21588

Copyright (c) 2024 Yunita -, Hilda Amalia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN: 2442-2436 (print), and 2550-0120


 dipublikasikan oleh LPPM Universitas Bina Sarana Informatika Jakarta

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License