PENERAPAN ALGORITMA NAÏVE BAYES UNTUK KLASIFIKASI BAKTERI GRAM-NEGATIF

Evy Priyanti

Abstract


The classification depends on the variety of bacteria that exist. The important feature to identify an organism of bacterial phenotype is the scheme that utilizes the morphology and staining properties of the bacteria itself, to classify the phenotype scheme is used Naïve Bayes algorithm that has proven to have a high degree of accuracy and high rate of speed when applied into E.coli dataset in E. coli dataset consisting of seven features are: mcg, gvh, lips, chg, aac, alm1, alm2, and proteins are classified into 8 classes: cytoplasmic (cp), an inner membrane without the signal sequence (im), perisplasm (pp), in the membrane with uncleavable signal sequence (IMU), outer membrane (oM), outer membrane lipoprotein (OML), the membrane lipoprotein (IML), an inner membrane with cleavable signal sequence (IMS) with an accuracy of 80.93%, with Naïve Bayes algorithm so it can be ascertained that the classification of gram-negative bacteria with E. coli phenotype datasets prove to be accurate.


Full Text:

PDF

References


Alpaydin, Ethem. (2010). Introduction to Machine Learning. The MIT Press, London UK.

Asliyan, Rifat. (2011). Syllable Based Speech Recognition. Computer and Information Science. Diambil dari: http://www.intechopen.com/books/speech-technologies/syllable-based-speech-recognition. (3 Desember 2014).

Berson, A., and Smith S. J. (2001). Data Warehousing, Data Mining, & OLAP. New York, NY : McGraw-Hill.

Bevan, Nigel. (1997). Quality and Usability: A New Framework. National Physical Laboratory. UK.

Bustami. (2013). Penerapan Algoritma Naive Bayes Untuk Mengklasifikasi Data Nasabah Asuransi, TECHSI : Jurnal Penelitian Teknik Informatika, Vol. 3, No.2, Hal. 127-146.

Pattern Classification by R. O. Duda, P. E. Hart, D. Stork, Wiley and Sons.

E. Prasetyo. (2012). Data Mining : Konsep dan Aplikasi menggunakan MATLAB, 1st ed. Yogyakarta,Indonesia: Andi.

F. Gorunescu. (2011). Data Mining Concepts, Models and Techniques. Chennai, India: Springer.

Gorunescu, Florin. (2011). Data Mining: Concepts, Models and Techniques. Verlag Berlin Heidelberg, Springer. Jerman.

Guillet, Fabrice. Hamilton, Howard J. (2007). Quality Measures in Data Mining. Verlag Berlin Heidelberg, Springer. Jerman.

Han,J & Kamber, Micheline. (2007). Data Mining Concepts, Models and Techniques. Second Edition, Morgan Kaufmann Publisher. Elsevier.

Kadhim, Jehan & Abdulrazzaq, Mohammad (2015). Forecasting USD/IQD Future Values According to Minimum RMSE Rate. Thi_Qar University. pg.271–285.

Keogh, Eamonn, UCR. (2006). Pattern Recognition and Machine Learning, Christopher Bishop, Springer-Verlag.

Kusrini and E. T. Luthfi. (2009). Algoritma Data Mining, 1st ed. Yogyakarta, Indonesia: Andi.

Larose, D. (2005). Discovering Knowledge in Data. New Jersey, John Willey & Sons.Inc.

Larose, Daniel T. (2006). Data Mining Methods and Models. Hoboken New Jersey : Jhon Wiley & Sons, Inc.

Liao, Warren. T. & Triantaphyllou. Evangelos. (2007). Recent Advances in Data Mining of Enterprise Data: Algorithms and Applications. Series: Computer and Operation Research. 6. 190.

Lim TS, Loh WY, Shih YS. (1999). A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Kluwer Academic Publishers: Boston.

Maimon, Oded & Rokach, Lior. (2010). Data Mining and Knowledge Discovery Handbook, Springer, New York.

Myatt, Glenn J. (2007). Making sense of data : A Practical Guide to Exploratory data analysis and Data Mining. John Wiley & Sons Inc, New Jersey.

Patil, T. R., Sherekar, M. S. (2013). Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification, International Journal of Computer Science and Applications, Vol. 6, No. 2, Hal 256-261.

Ridwan, M., Suyono, H., Sarosa, M. (2013). Penerapan Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier, Jurnal EECCIS, Vol 1, No. 7, Hal. 59-64.

Shukla, Anupam. Tiwari, Ritu. & Kala, Rahul. (2010). Real Life Application of Soft Computing. New York: Taylor and Francis Groups, LLC.

S. N. Chatterjee and K. Chaudhuri. (2012). Outer Membrane Vesicles of Bacteria, SpringerBriefs in Microbiology, DOI: 10.1007/978-3-642-30526-9_2.

Sudjana. (1996). Metoda Statistika, Edisi ke-6. Bandung.

Vercellis,C. (2009). Business Intelligence: Data Mining and Optimization for Decision Making. Wiley.

Witten,I. Frank, E., & Hall. (2011). Data Mining: Practical Machine Learning and tools. Morgan Kaufmann Publisher, Burlington.




DOI: https://doi.org/10.31294/jtk.v3i2.1779

 dipublikasikan oleh LPPM Universitas Bina Sarana Informatika Jakarta

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License