Kriptanalisis Kunci Publik ElGamal Menggunakan Jaringan Syaraf Ridge Polynomial
Abstract
Keamanan kriptografi dapat diuji dengan menggunakan kriptanalisis. Tingkat keamanan kriptografi kunci publik ElGamal tergantung pada tingkat kesulitan menemukan logaritma diskrit. Penelitian ini melakukan kriptanalisis kunci public ElGamal dengan menggunakan Jaringan Syaraf Ridge Polynomial. Hasil penelitian menunjukkan Jaringan Syaraf Ridge Polynomial mampu menentukan kunci private. Dengan menggunakan metode yang diusulkan dapat mengatasi iterasi yang terjebak ke dalam minimal lokal. Oleh karena itu menghasilkan pengujian iterasi yang konvergen.
Keywords
Full Text:
PDFReferences
Epitropakis, M. G., & Vrahatis, M. N. (2005). Root finding and approximation approaches through neural networks. ACM SIGSAM Bulletin, 39(4), 118-121.
Ghazali, R., Hussain, A. J., Liatsis, P., & Tawfik, H. (2008). The application of ridge polynomial neural network to multi-step ahead financial time series prediction. Neural Computing and Applications, 17(3), 311-323.
Gupta, M., Jin, L., & Homma, N. (2004). Static and dynamic neural networks: From fundamentals to advanced theory. John Wiley & Sons.
Hussein, H. I., Mstafa, R. J., Mohammed, A. O., & Younis, Y. M. (2022). An enhanced ElGamal cryptosystem for image encryption and decryption. In 2022 International Conference on Computer Science and Software Engineering (CSASE) (pp. 337-342). IEEE.
Inam, S., & Ali, R. (2018). A new ElGamal-like cryptosystem based on matrices over groupring. Neural Computing and Applications, 29(11), 1279-1283.
Jia, J., Wang, H., Zhang, H., Wang, S., & Liu, J. (2018). Cryptanalysis of an ElGamal-Like cryptosystem based on matrices over group rings. In Chinese Conference on Trusted Computing and Information Security (pp. 255-269). Springer, Singapore.
Jintcharadze, E., & Iavich, M. (2020). Hybrid implementation of Twofish, AES, ElGamal and RSA cryptosystems. In 2020 IEEE East-West Design & Test Symposium (EWDTS) (pp. 1-5). IEEE.
Joye, M., & Quisquater, J. J. (1998). Cryptanalysis of RSA-type cryptosystems: A visit. Network Threats: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, 38, 21-31.
Karnavas, Y. L., & Papadopoulos, D. P. (2004). Excitation control of a synchronous machine using polynomial neural networks. Journal of Electrical Engineering, 55(7-8), 169-179.
Markowska-Kaczmar, U., & Switek, T. (2009). Combined unsupervised-supervised classification method. In International Conference on Knowledge-Based and Intelligent Information and Engineering Systems (pp. 861-868). Springer, Berlin, Heidelberg.
Pandey, A., Gupta, I., & Singh, D. K. (2021). Improved cryptanalysis of a ElGamal cryptosystem based on matrices over group rings. Journal of Mathematical Cryptology, 15(1), 266-279.
Ren, J., & Harn, L. (2006). Ring signature based on ElGamal signature. In International Conference on Wireless Algorithms, Systems, and Applications (pp. 445-456). Springer, Berlin, Heidelberg.
Shamir, A. (1995). RSA for paranoids. CryptoBytes, 1, 1-4.
Shin, Y., & Ghosh, J. (1992). Approximation of multivariate functions using ridge polynomial networks. In Proceedings of international joint conference on neural networks (Vol. 2, pp. 380-385).
Wang, H., Han, S., Deng, C., & Zhang, F. (2009). Cryptanalysis and improvement of a ring signature based on ElGamal signature. In 2009 WRI World Congress on Software Engineering (Vol. 3, pp. 397-401). IEEE.
DOI: https://doi.org/10.31294/jtk.v8i2.13543
Copyright (c) 2022 Rina Pramita Sari, Imam Rofiki
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN: 2442-2436 (print), and 2550-0120