Implementasi Metode Naive Bayes Dalam Penyeleksian Karyawan untuk Penempatan Bagian Pemasaran

Eka Fitriani, Royadi Royadi, Atang Saepudin, Dian Ardiansyah, Riska Aryanti

Abstract


Marketing is a job that has a scope of work on the promotion of a product, goods or service. The problem that always occurs in the company is that there is no department responsible for selecting reliable marketing employees. The existence of these problems resulted in the process of recruiting employees for the new marketing division which was still not carried out professionally. This can happen because there is no standard method to be able to support in assessing the selection of prospective employees in the marketing department, it is necessary to do an analysis related to the selection of employees in the placement of the marketing department. By holding the analysis process for employees in the placement of a new marketing division, it can be seen whether the prospective marketing division employee passes or does not pass. From the existing problems, a data mining classification method is used to predict the selection of employees for the Marketing section by using the nave Bayes method. After testing using the nave Bayes method, it produces an accuracy value of 87.22% and an AUC value of 0.920 with an Excellent Classification diagnostic level. So it can be concluded that using the nave Bayes method can be a good method for implementation in selecting employees for placement in the Marketing department.


Keywords


Selection of Marketing Department, Data Mining, Naive Bayes

Full Text:

PDF

References


Amalia, H., Lestari, A. F., & Puspita, A. (2017). Penerapan Metode Svm Berbasis Pso Untuk Penentuan Kebangkrutan Perusahaan. Jurnal Techno Nusa Mandiri, 14(2), 131–136.

Hanggara, S., Akhriza, T. M., & Husni, M. (2017). Aplikasi Web Untuk Analisis Sentimen Pada Opini Produk dengan Metode Naive Bayes Classifier. Seminar Nasional Inovasi Dan Aplikasi Teknologi Di Industri 2017, 1–6.

Iriadi, N., & Nuraeni, N. (2016). Kajian Penerapan Metode Klasifikasi Data Penyeleksian Kredit Pada Bank. Jurnal Teknik Komputer AMIK BSI, II(1), 132–137.

Iskandar, D., & Suprapto, Y. K. (2015). Perbandingan Akurasi Klasifikasi Tingkat Kemiskinan Antara Algoritma C 4.5 Dan Naïve Bayes. Ilmiah NERO, 2(1), 37–43.

Nugroho, Y. S., & Emiliyawati, N. (2017). Sistem Klasifikasi Variabel Tingkat Penerimaan Konsumen Terhadap Mobil Menggunakan Metode Random Forest. Jurnal Teknik Elektro, 9(1)

Nuraeni, N. (2017). Penentuan Penyeleksian Kredit Dengan Algoritma Naïve Bayes Classifier : Studi Kasus Bank Mayapada Mitra Usaha Cabang PGC, III(1), 9–15.

Nuryanti, L. (2017). Penentuan Calon Pegawai di PTPN 12 Kota Blater Tempurejo Jember dengan Metode Naïve Bayes. Seminar Nasional Teknologi Informasi Dan Multimetida, 61-66.

Puspita, A., & Wahyudi, M. (2015). Algoritma C4.5 Berbasis Decision Tree untuk Prediksi Kelahiran Bayi Prematur, 97–102.

Sari, N. R., Mahmudy, W. F., Ilmu, M., Informatika, K., Teknologi, P., & Komputer, I. (2015). Fuzzy inference system tsukamoto untuk menentukan Penyeleksian calon pegawai, (November), 2–3.

Setiawan, D. (2017). Optimalisasi Data Mining Mengunakan Rapid Miner Untuk Prediksi Kelulusan Mahasiswa.

Tree, M. D., Forest, R., P, R. D. L., Fatichah, C., Purwitasari, D., & Twitter, A. (2017). Deteksi Gempa Berdasarkan Data Twitter, 6(1), 159–162.

Wijayanti Titik (2017). Pemasaran plant! Dalam bisnis. Elex media komputerindo, Jakarta




DOI: https://doi.org/10.31294/jtk.v8i2.12532

Copyright (c) 2022 Eka Fitriani, Royadi Royadi, Atang Saepudin, Dian Ardiansyah, Riska Aryanti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN: 2442-2436 (print), and 2550-0120


 dipublikasikan oleh LPPM Universitas Bina Sarana Informatika Jakarta

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License