Implementasi Data Mining Dengan Algoritma Multiple Linear Regression Untuk Memprediksi Penyakit Diabetes

Ratih Yulia Hayuningtyas, Retno Sari

Abstract


According to WHO, diabetes is a metabolic disorder characterized by high levels of sugar in the blood. Diabetes is a deadly disease if the sufferer cannot control it and it will become a complication. Many people are affected by diabetes and find out too late, so that at the time of treatment the condition has complications. Early detection of diabetes is very helpful for sufferers to avoid complications that will occur. Therefore we need a data mining technique that can process data and prevent diabetes from an early age. Data mining is a process of extracting knowledge from a number of data to find a pattern. Data mining has been widely used, one of which is the prediction method to find out people with diabetes. There are so many prediction methods available, one of which is linear regression, where this method uses dependent and independent attributes. In this study, the multiple linear regression method is used to predict diabetes, and evaluates using RMSE (root mean square error). The results of this study produce an RMSE value of 0.403, the RMSE test uses cross validation by changing the number of validation value

Keywords


Data Mining, Linear Regression, Diabetes

Full Text:

PDF

References


Aldallal, A., & Al-Moosa, A. A. A. (2018). Using Data Mining Techniques to Predict Diabetes and Heart Diseases. 2018 4th International Conference on Frontiers of Signal Processing, ICFSP 2018, September, 150–154. https://doi.org/10.1109/ICFSP.2018.8552051

Baiju, B. V., & Aravindhar, D. J. (2019). Disease Influence Measure Based Diabetic Prediction with Medical Data Set Using Data Mining. Proceedings of 1st International Conference on Innovations in Information and Communication Technology, ICIICT 2019, 1–6. https://doi.org/10.1109/ICIICT1.2019.8741452

Gaol, I. L. L., Sinurat, S., & Siagian, E. R. (2019). Implementasi Data Mining Dengan Metode Regresi Linear Berganda Untuk Memprediksi Data Persediaan Buku Pada Pt. Yudhistira Ghalia Indonesia Area Sumatera Utara. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 130–133. https://doi.org/10.30865/komik.v3i1.1579

George, T., & Hema, A. (2015). A Survey On Diabetes And Heart Disease Prediction Using Daata Mining Techniques. International Journal of Applied Engineering Research, 10(55), 2786–2789.

Hayuningtyas, R. Y., & Sari, R. (2021). Laporan Akhir: Penelitian Implementasi Data Mining Dengan Algoritma Multiple Linear Regression Untuk Memprediksi Penyakit Diabetes.

Herwanto, H. W., Widiyaningtyas, T., & Indriana, P. (2019). Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi (JNTETI), 8(4), 364. https://doi.org/10.22146/jnteti.v8i4.537

Islam, M. M. F., Ferdousi, R., Rahman, S., & Bushra, H. Y. (2019). Likelihood Prediction of Diabetes at Early Stage Using Data Mining Techniques. In Computer Vision and Machine Intelligence in Medical Image Analysis.

Lindungi Keluarga Dari Diabetes - Direktorat P2PTM. (n.d.). Retrieved October 18, 2021, from http://p2ptm.kemkes.go.id/post/lindungi-keluarga-dari-diabetes

Prasetyo, V. R., Lazuardi, H., Mulyono, A. A., & Lauw, C. (2021). Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Regresi Linier. Jurnal Nasional Teknologi Dan Sistem Informasi, 7(1), 8–17. https://doi.org/10.25077/teknosi.v7i1.2021.8-17

Putri, S. U., Irawan, E., & Rizky, F. (2021). Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C.45. KESATRIA( Jurnal Penerapan Sistem Informasi Dan Manajemen, 2(1), 39–46.

Rahimloo, P., & Jafarian, A. (2016). Prediction of Diabetes by Using Artificial Neural Network, Logistic Regression Statistical Model and Combination of Them. Bulletin de La Société Royale Des Sciences de Liège, 85, 1148–1164. https://doi.org/10.25518/0037-9565.5938

Rao, K., Yellaswamy, K., & Chandu, Y. (2017). A comparative study of heart disease predictionusing classification techniques in data mining. October 2015.




DOI: https://doi.org/10.31294/jtk.v8i1.11552

 dipublikasikan oleh LPPM Universitas Bina Sarana Informatika Jakarta

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License