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Abstract
Waste management is an important challenge in protecting the environment and public health.
Improperly managed waste can cause pollution and hinder the recycling process. This study aims to
classify waste based on images by optimizing three deep learning architectures, namely EfficientNetB3,
MobileNetV2, and ResNet50, to determine the model with the best performance. The dataset comes
from the Kaggle platform, consisting of 4,650 images in six categories: battery, glass, metal, organic,
paper, and plastic. The research stages include preprocessing, data augmentation, model development,
and evaluation using accuracy, precision, recall, and F1-score metrics. The results show that
EfficientNetB3 with the Adam optimizer achieved the best performance with 93% accuracy, followed by
ResNet50 with 91%, while MobileNetV2 ranged from 70-73% depending on the optimizer. Variations in
optimizers were found to affect model performance, while data augmentation improved generalization
capabilities, especially in classes with limited samples. This research confirms the potential of deep
learning methods in supporting automatic waste classification systems and provides a basis for the

development of technology-based waste management systems in the future.
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1. Introduction

Waste management in Indonesia is
becoming an increasingly urgent issue due to
rapid population growth and urbanization. Poorly
managed waste can cause air, soil, and water
pollution, reduce quality of life, and hinder the
recycling process (Julia Lingga et al., 2024). One
crucial aspect of waste management is the
process of sorting waste, which is still mostly done
manually and inefficiently. Improper sorting has a
direct impact on the effectiveness of recycling
(Aziz et al., 2025).

In this context, artificial intelligence (Al)-
based technology, particularly Deep Learning, has
shown great potential for automating the waste
classification process (Pieters, 2025). Deep
Learning architectures such as Convolutional
Neural Networks (CNN) are capable of accurately
and efficiently recognizing and classifying waste
types from images (Muslihati et al., 2024),
although model performance is greatly influenced
by data variation, lighting conditions, shape, and
texture of the waste (Sihabillah et al., 2025).

Previous studies have demonstrated the
application of CNNs for waste classification using
various architectures, ranging from AlexNet,
LeNet, and VGG16 for basic models (Muslihati et

al., 2024), to pre-trained models through transfer
learning such as ResNet50, InceptionV3, and
MobileNetV2 (Akbar, 2024). The transfer learning
and fine-tuning approaches have been proven to
significantly improve accuracy compared to
training from scratch, while the use of lightweight
models such as MobileNet and EfficientNet
enables implementation on devices with limited
computational resources (Pieters, 2025). In
addition to static image classification, an object
detection-based approach was also developed
using the TensorFlow Object Detection APl and
transfer learning (Fathurrahman & Akbar, 2024).
Data augmentation techniques are also widely
used to overcome limited dataset constraints and
improve model generalization capabilities
(Syaifudin, 2024). In addition, experiments with
various optimizers, such as Adam, AdamW, and
SGD, have been shown to affect model
performance (Anggara et al., 2023; Irfan et al.,
2022; Sarasuartha Mahajaya et al., 2024), making
the selection of the appropriate optimizer an
important part of the optimization process
(Sarasuartha Mahajaya et al., 2024).

However, most studies still have limitations,
such as a limited number of waste classes, small
dataset sizes, or a focus on only one architecture
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without comparing the performance of several
models at once. There have not been many
studies that systematically optimize and compare
several Deep Learning architectures with various
optimizers to determine the best combination for
multi-class waste classification. This is the
research gap addressed by this study.

Based on this, this study aims to implement
and compare three popular Deep Learning
architectures, namely EfficientNetB3,
MobileNetV2, and ResNet50, in a multi-class
waste classification task. In addition, this study
also evaluates the effect of using various
optimizers, such as Adam, AdamW, and SGD, on
the performance of each architecture. Thus, this
study focuses on finding the best combination of
architecture and optimizer that can produce
optimal performance. The results of this study are
expected to contribute to the selection of the
appropriate architecture and optimization strategy
for building an automatic waste classification
system, which in turn can support more effective
and efficient waste processing.

2. Research Methods

The methods used in this study include
several main stages, namely data collection, data
pre-processing, data augmentation, model
architecture, Optimization, and model evaluation.
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Figure 1. Research Methods

1. Data Collection

The dataset used in this study was
obtained from the Kaggle platform. This dataset
consists of images of waste classified into several
categories, namely batteries, glass, metal,
organic, paper, and plastic, as shown in Figure 2.
The total dataset consists of 4,650 images, with
each category having 775 images, the details of
which are shown in Table 1.

For model training and validation
purposes, the dataset was divided into 80% for
training data, 10% for testing data, and 10% for
validation data.

Figure 2. Samples in each Class

Table 1. Image Distribution

Class Number of Images
Battery 775
Glass 775
Metal 775
Organic 775
Paper 775
Plastic 775
Total Number 4.650

2. Data Preprocessing

The preprocessing stage is carried out to
improve data quality and prepare images so that
they can be optimally processed by deep learning
models. All images are resized to 224 x 224 pixels
to match the input dimensions of EfficientNetB3,
MobileNetV2, and ResNet50, converted to RGB
format, and normalized to the range [0,1] to aid
training stability and accelerate convergence. In
addition, the waste category labels are converted
to one-hot encoding format so that they can be
used in multi-class classification.

3. Data Augmentation

To increase the diversity of training data
and prevent overfitting, this study applies data
augmentation to waste images. Augmentation is
especially important when the dataset is limited,
as it provides additional visual variation so that the
model can learn more generally from new data
(Rianto & Santosa, 2025).

The augmentation techniques used
include random rotation to generate different
orientations, zooming for scale variation,
horizontal flipping so that the model recognizes
objects in mirror orientation, shear transformation
to add shape variation, and brightness adjustment
to improve the model's resilience to lighting
differences.

4. Model Architecture

The model architecture stage in this study
includes the application of deep learning
architecture and configuration for the classification
of six categories of waste. The three architectures
used are EfficientNetB3, MobileNetV2, and
ResNet50, each of which has different
characteristics in terms of parameter efficiency
and network depth.
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EfficientNetB3 was chosen because of its
efficient architecture with compound scaling,
which provides high accuracy with fewer
parameters (Agustina, 2025). MobileNetV2 was
chosen because of its lightweight design, which is
ideal for real-time applications on devices with
limited resources (Agustin et al., 2025). ResNet50
was chosen because of its residual block's
superior ability to extract complex features from
multi-varied images such as waste (Munthe &
Akbar, 2025).

5. Optimization Model

Model optimization is performed to
improve training performance and stability in each
deep learning architecture. This study tests three
optimization algorithms, namely Adam, AdamW,
and Stochastic Gradient Descent (SGD), to
compare their effectiveness in accelerating
convergence while producing the best accuracy.
Adam is known to converge quickly and be stable
on various datasets (Khadafi & Zer, 2025),
AdamW separates weight decay from gradient
updates, providing more effective regularization
(Pranatha et al., 2024), while SGD provides good
control over the parameter update process and
supports model generalization (Saptadi et al.,
2025).

In addition to optimizer selection, this
study also applies a regularization strategy by
adding a dropout layer at the end of the network to
reduce the risk of overfitting. The training process
is regulated through hyperparameter tuning with a
learning rate configuration of 0.0001, a batch size
of 64, and a maximum of 200 epochs. To prevent
overfitting, the early stopping technique is used
with monitoring of the validation loss, so that
training can be stopped early when the model
performance does not show significant
improvement. This combination of optimization,
regularization, and hyperparameter adjustment
strategies is expected to produce an optimal
model capable of generalizing well to the test data.

6. Model Evaluation

Model evaluation was conducted to
assess the performance of each architecture in
classifying six categories of waste. The evaluation
process used separate validation and test data to
ensure the model's generalization ability to new
data. The metrics used included accuracy,
precision, recall, and F1-score, which were the
main indicators of classification performance.
Here are the formulas and their explanations
(Jannah et al., 2025).

TP+TN
Accuracy = TP+FPATNAFN x 100% (1)
P TP
Precision = x100% (2)

TP+FP

TP
TP+FN

Recall = x100% (3)

2 x (Recall x Precision)

F1 — Score =

x100% (4)

(Recall+Precision)

In addition, the best model is evaluated in
more depth using a confusion matrix, which
visualizes the distribution of predictions between
classes, and ROC-AUC, which assesses the
model's ability to distinguish between classes. The
results of this evaluation form the basis for
selecting the best model to be implemented in the
automatic waste classification system.

3. Results and Discussion

This section presents the results of image
classification experiments using three deep
learning architectures—EfficientNetB3,
MobileNetV2, and ResNet50—combined with
several optimizers (Adam, AdamW, and SGD).
The performance of each model is evaluated
based on accuracy, precision, recall, and F1-score
metrics to provide a comprehensive overview of its
effectiveness.

1. Model Evaluation Results

Testing was conducted on all
combinations of architectures and optimizers. The
evaluation results are shown in Figures 3, 4, and
5, which visualize the comparison of model
performance based on accuracy, precision, recall,
and F1-score metrics. This presentation facilitates
analysis of the performance differences between
the tested architectures.

Model Evaluation of EfficientNetB3

0,94
0,93
0,93
il n
0,92
Adam AdamW SGD
EfficientNetB3

m Accuracy ®Precision Recall ®mF1-Score

Figure 3. Model Evaluation of EfficientNetB3

Figure 3 shows the results of evaluating
the performance of the EfficientNetB3 model with
three optimizers. The results show that the Adam
optimizer provides the best performance with
accuracy, precision, recall, and F1-score values of
0.93. Meanwhile, AdamW and SGD produce
slightly lower but consistent values, namely 0.92
on all evaluation metrics. This consistency
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indicates that the EfficientNetB3 architecture is
quite stable. Although Adam provides a slight
improvement, all three optimizers still produce
competitive performance.

Model Evaluation of MobileNetV?2

Adam AdamW
MobileNetV2

0,75
0,74
0,73
0,72
0,71
0,70
0,69
0,68

mAccuracy ®Precision Recall ®F1-Score

Figure 4. Model Evaluation of MobileNetV2

Figure 4 shows the results of evaluating
the performance of the MobileNetV2 model with
three types of optimizers. The graph shows that
AdamW provides the best performance, with
accuracy, recall, and F1-score values of 0.73, and
precision of 0.74. Meanwhile, the Adam and SGD
optimizers show relatively stable performance,
each producing accuracy, recall, and F1-score of
0.70, with precision of 0.71 for Adam and 0.72 for
SGD.

These results indicate that the choice of
optimizer affects the performance of MobileNetV2,
where AdamW is able to improve the model's
ability to extract image features, resulting in more
accurate predictions.

Model Evaluation of ResNet50

Adam AdamW
ResNet50

0,93
0,92
0,92
0,91
0,91
0,90
0,90
0,89

mAccuracy HPrecision Recall ®mF1-Score

Figure 5. Model Evaluation of ResNet50

Figure 5 shows the performance of the
ResNet50 model with three types of optimizers.
For Adam, the model achieved an accuracy,
recall, and F1-score of 0.91, with a precision of
0.91. Meanwhile, for SGD, the accuracy, recall,
and F1-score were also 0.91, but the precision
was slightly higher at 0.92. Meanwhile, AdamW

shows consistent values for all metrics, namely
0.90. From these results, it can be seen that
ResNet50 can perform classification well with all
three optimizers, with SGD providing the best
performance on the precision metric.

3. Optimizer Comparison Analysis

The use of the Adam optimizer provides
consistently high performance on all three model
architectures tested. EfficientNetB3 showed the
best results with accuracy, precision, recall, and
F1-score of 0.93, followed by ResNet50 with a
score of 0.91, while MobileNetV2 lagged far
behind with an accuracy of 0.70. This indicates
that Adam is highly effective for more complex
architectures such as EfficientNetB3 and
ResNet50, while its performance is less optimal on
lightweight architectures such as MobileNetV2.

The AdamW  optimizer  produces
performance close to Adam on all models, but with
a slight decrease in metric values. EfficientNetB3
recorded an accuracy of 0.92, ResNet50 recorded
0.90, and MobileNetV2 actually experienced an
increase compared to Adam with an accuracy of
0.73. This shows that AdamW is more stable on
lightweight architectures such as MobileNetV2,
but is not as optimal as Adam on more complex
models.

The SGD optimizer shows relatively
stable performance on the EfficientNetB3 and
ResNet50 models with accuracies of 0.92 and
0.91. However, the results on MobileNetV2 are
less satisfactory with an accuracy of only 0.70.
This indicates that the SGD optimizer requires
more specific parameter adjustments, such as
learning rate and momentum, in order to work
optimally, especially on lightweight models.
Compared to Adam and AdamW, SGD
performance tends to be lower on this dataset.

4. Comparative Model Analysis

Based on the test results in Figures 3, 4,
and 5, it can be seen that EfficientNetB3 with the
Adam optimizer achieved the best performance
with an accuracy, precision, recall, and F1-score
of 0.93. ResNet50 ranks second with relatively
stable performance in the range of 0.90-0.91,
while  MobileNetV2  shows much lower
performance with an accuracy of around 0.70—
0.73.

This difference can be explained by the
complexity and representation capacity of each
model. EfficientNetB3 is designed with a
compound scaling approach that balances the
depth, width, and resolution of the network so that
it is more effective at capturing complex visual
patterns in  waste images. Meanwhile,
MobileNetV2 is lighter and optimized for devices
with computational limitations, so it tends to
sacrifice accuracy. ResNet50 is still competitive
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because it has a residual learning architecture, but
its performance is slightly below EfficientNetB3.

In terms of optimizers, Adam shows the
best consistency in results for almost all models,
especially EfficientNetB3. AdamW and SGD
provide relatively similar performance, although
slightly lower. This shows that the combination of
the right architecture and the appropriate
optimizer greatly affects the classification results.

Comparing the results of this study with
previous studies is important to show the position
and contribution of this study in the field of deep
learning-based waste classification. Several
previous studies have used various network
architectures to solve similar problems, with
varying accuracy results depending on the
complexity of the architecture, the dataset used,
and the training method. The following table
summarizes a comparison of the accuracy of
several studies relevant to this study.

Table 2. Comparison with Related Research

Researcher Architecture Accuracy
(Muslihati et NasNet Mobile 82%
al., 2024)
(Pieters, 2025) CNN 52%
(Fathurrahman SSD MobileNet 85%
& Akbar, 2024) V2 FPNLite

640x640
(Akbar, 2024) DenseNet169 92%
Proposed EfficientNetB3 93%
Method

Based on Table 2, it can be seen that the
method proposed in this study, namely
EfficientNetB3, is capable of providing the highest
accuracy of 93%, surpassing previous studies that
used DenseNet169 (92%), SSD MobileNet V2
FPNLite 640x640 (85%), NasNet Mobile (82%),
and standard CNN (52%). This shows that the
selection of the EfficientNetB3 architecture, which
optimizes the balance between depth, width, and
network resolution, is capable of providing better
feature representation for waste classification
tasks. Thus, this study makes a real contribution
to improving the performance of deep learning-
based waste classification, while strengthening its
potential application in sustainable waste
management systems.

5. Evaluation of the Best Model

Based on the test results, the
EfficientNetB3 model with the Adam optimizer was
selected as the best model. This model was able
to achieve an accuracy, precision, recall, and F1-
score value of 0.93, which was superior to other
combinations of models and optimizers.

Classification Report:

precision recall fl-score support

battery 9.99 08.95 0.97 77
glass 0.89 0.8 0.89 7
metal .88 @.91 0.89 77

7

4

4

organie 1.09 a.9% 2,99 77

paper @.96 0.97 0.97

plastic 9.88 9.5%¢ 0.89

accuracy 0.93% 462
macro avg .93 @.43 9.91 a62
weighted avg 9.93 .93 9,93 a62

Figure 6. Classification Report

Figure 6 shows the consistency of values
across all metrics, confirming that this model is not
only accurate but also balanced in recognizing all
waste classes. This consistency is important
because each type of waste has different
characteristics and needs to be predicted with the
same level of reliability. Further analysis was
conducted using a confusion matrix, which
provides a detailed overview of the distribution of
prediction results for each class.

wlunion Matnx

Figure 7. Cbnfusion Matrix

The results show that most of the waste
images were predicted correctly, although there
were some classification errors in classes with
similar visual characteristics. In addition, the
model performance evaluation was also visualized
through the ROC (Receiver Operating
Characteristic) curve and AUC (Area Under
Curve) values.

-

’

Figure 7. ROC Curve and AUC Value
Figure 7 shows the Receiver Operating
Characteristic (ROC) curve of the EfficientNetB3
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model, with an Area Under the Curve (AUC) value
of 0.92. This high AUC value indicates that the
model is able to distinguish between positive and
negative classes with a very good level of
reliability. The ROC curve, which is well above the
baseline diagonal line, confirms that the model
has balanced sensitivity and specificity, so it does
not focus on just one specific metric. These results
reinforce the findings from the confusion matrix
that the model has consistent classification
capabilities across various waste classes, making
it reliable for implementation in automatic
classification systems. As a supplement, several
sample image predictions are also shown.

Table 1. Sample Results of Class Prediction

Prediction Prediction Results
Class
Battery Ry
Glass

. |
Paper

|

Table 1 shows several examples of model
prediction results on test images. It can be seen
that the model is capable of classifying various
types of waste with a high confidence level,
reaching more than 95% in sample tests from
three classes.

4. Conclusion

Based on the test results, several deep
learning architectures, namely EfficientNetB3,
MobileNetV2, and ResNet50, showed different
capabilities in waste classification. EfficientNetB3
provided the best performance with the highest
accuracy, precision, recall, and F1-score,
indicating that this architecture is more effective in
capturing complex waste image features. The use
of different optimizers also affects model
performance, with Adam and AdamW tending to
converge faster than SGD. Thus, the combination
of the EfficientNetB3 architecture and the
appropriate optimizer can be implemented to build
an accurate and efficient automatic waste
classification system, supporting sustainable
waste management.This study has several
limitations, including the fact that the dataset used
is still limited to six waste classes, the image

variation in each class does not fully represent real
conditions, and the computation time for some
architectures is still quite high.

For further research, it is recommended to
increase the number and variety of datasets to
make the model more robust, explore other deep
learning architectures or model combinations, and
optimize computation time to facilitate the
implementation of automatic waste classification
systems in real-world environments.
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