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Abstract 

Waste management is an important challenge in protecting the environment and public health. 
Improperly managed waste can cause pollution and hinder the recycling process. This study aims to 
classify waste based on images by optimizing three deep learning architectures, namely EfficientNetB3, 
MobileNetV2, and ResNet50, to determine the model with the best performance. The dataset comes 
from the Kaggle platform, consisting of 4,650 images in six categories: battery, glass, metal, organic, 
paper, and plastic. The research stages include preprocessing, data augmentation, model development, 
and evaluation using accuracy, precision, recall, and F1-score metrics. The results show that 
EfficientNetB3 with the Adam optimizer achieved the best performance with 93% accuracy, followed by 
ResNet50 with 91%, while MobileNetV2 ranged from 70–73% depending on the optimizer. Variations in 
optimizers were found to affect model performance, while data augmentation improved generalization 
capabilities, especially in classes with limited samples. This research confirms the potential of deep 
learning methods in supporting automatic waste classification systems and provides a basis for the 
development of technology-based waste management systems in the future. 
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1. Introduction 

Waste management in Indonesia is 
becoming an increasingly urgent issue due to 
rapid population growth and urbanization. Poorly 
managed waste can cause air, soil, and water 
pollution, reduce quality of life, and hinder the 
recycling process (Julia Lingga et al., 2024). One 
crucial aspect of waste management is the 
process of sorting waste, which is still mostly done 
manually and inefficiently. Improper sorting has a 
direct impact on the effectiveness of recycling 
(Aziz et al., 2025).  

In this context, artificial intelligence (AI)-
based technology, particularly Deep Learning, has 
shown great potential for automating the waste 
classification process (Pieters, 2025). Deep 
Learning architectures such as Convolutional 
Neural Networks (CNN) are capable of accurately 
and efficiently recognizing and classifying waste 
types from images (Muslihati et al., 2024), 
although model performance is greatly influenced 
by data variation, lighting conditions, shape, and 
texture of the waste (Sihabillah et al., 2025). 

Previous studies have demonstrated the 
application of CNNs for waste classification using 
various architectures, ranging from AlexNet, 

LeNet, and VGG16 for basic models (Muslihati et 
al., 2024), to pre-trained models through transfer 
learning such as ResNet50, InceptionV3, and 
MobileNetV2  (Akbar, 2024). The transfer learning 
and fine-tuning approaches have been proven to 
significantly improve accuracy compared to 
training from scratch, while the use of lightweight 
models such as MobileNet and EfficientNet 
enables implementation on devices with limited 
computational resources (Pieters, 2025). In 
addition to static image classification, an object 
detection-based approach was also developed 
using the TensorFlow Object Detection API and 
transfer learning (Fathurrahman & Akbar, 2024).  
Data augmentation techniques are also widely 
used to overcome limited dataset constraints and 
improve model generalization capabilities 
(Syaifudin, 2024). In addition, experiments with 
various optimizers, such as Adam, AdamW, and 
SGD, have been shown to affect model 
performance (Anggara et al., 2023; Irfan et al., 
2022; Sarasuartha Mahajaya et al., 2024), making 
the selection of the appropriate optimizer an 
important part of the optimization process 
(Sarasuartha Mahajaya et al., 2024). 
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However, most studies still have limitations, 
such as a limited number of waste classes, small 
dataset sizes, or a focus on only one architecture 
without comparing the performance of several 
models at once. There have not been many 
studies that systematically optimize and compare 
several Deep Learning architectures with various 
optimizers to determine the best combination for 
multi-class waste classification. This is the 
research gap addressed by this study. 

Based on this, this study aims to implement 
and compare three popular Deep Learning 
architectures, namely EfficientNetB3, 
MobileNetV2, and ResNet50, in a multi-class 
waste classification task. In addition, this study 
also evaluates the effect of using various 
optimizers, such as Adam, AdamW, and SGD, on 
the performance of each architecture. Thus, this 
study focuses on finding the best combination of 
architecture and optimizer that can produce 
optimal performance. The results of this study are 
expected to contribute to the selection of the 
appropriate architecture and optimization strategy 
for building an automatic waste classification 
system, which in turn can support more effective 
and efficient waste processing. 

 
2. Research Methods 

The methods used in this study include 
several main stages, namely data collection, data 
pre-processing, data augmentation, model 
architecture, Optimization, and model evaluation. 

 

 
Figure 1. Research Methods 

 
1. Data Collection 

The dataset used in this study was 
obtained from the Kaggle platform. This dataset 
consists of images of waste classified into several 
categories, namely batteries, glass, metal, 
organic, paper, and plastic, as shown in Figure 2. 
The total dataset consists of 4,650 images, with 
each category having 775 images, the details of 
which are shown in Table 1.  

For model training and validation 
purposes, the dataset was divided into 80% for 

training data, 10% for testing data, and 10% for 
validation data. 

 
Figure 2. Samples in each Class 

 
Table 1. Image Distribution 

Class Number of Images 

Battery 775 
Glass 775 
Metal 775 
Organic 775 
Paper 775 
Plastic 775 
Total Number 4.650 

 
2. Data Preprocessing 

The preprocessing stage is carried out to 
improve data quality and prepare images so that 
they can be optimally processed by deep learning 
models. All images are resized to 224 × 224 pixels 
to match the input dimensions of EfficientNetB3, 
MobileNetV2, and ResNet50, converted to RGB 
format, and normalized to the range [0,1] to aid 
training stability and accelerate convergence. In 
addition, the waste category labels are converted 
to one-hot encoding format so that they can be 
used in multi-class classification. 

 
3. Data Augmentation 

To increase the diversity of training data 
and prevent overfitting, this study applies data 
augmentation to waste images. Augmentation is 
especially important when the dataset is limited, 
as it provides additional visual variation so that the 
model can learn more generally from new data 
(Rianto & Santosa, 2025).  

The augmentation techniques used 
include random rotation to generate different 
orientations, zooming for scale variation, 
horizontal flipping so that the model recognizes 
objects in mirror orientation, shear transformation 
to add shape variation, and brightness adjustment 
to improve the model's resilience to lighting 
differences. 

 
4. Model Architecture 

The model architecture stage in this study 
includes the application of deep learning 
architecture and configuration for the classification 
of six categories of waste. The three architectures 
used are EfficientNetB3, MobileNetV2, and 
ResNet50, each of which has different 
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characteristics in terms of parameter efficiency 
and network depth.  

EfficientNetB3 was chosen because of its 
efficient architecture with compound scaling, 
which provides high accuracy with fewer 
parameters (Agustina, 2025). MobileNetV2 was 
chosen because of its lightweight design, which is 
ideal for real-time applications on devices with 
limited resources (Agustin et al., 2025). ResNet50 
was chosen because of its residual block's 
superior ability to extract complex features from 
multi-varied images such as waste (Munthe & 
Akbar, 2025). 

 
5. Optimization Model 

Model optimization is performed to 
improve training performance and stability in each 
deep learning architecture. This study tests three 
optimization algorithms, namely Adam, AdamW, 
and Stochastic Gradient Descent (SGD), to 
compare their effectiveness in accelerating 
convergence while producing the best accuracy. 
Adam is known to converge quickly and be stable 
on various datasets (Khadafi & Zer, 2025), 
AdamW separates weight decay from gradient 
updates, providing more effective regularization 
(Pranatha et al., 2024), while SGD provides good 
control over the parameter update process and 
supports model generalization (Saptadi et al., 
2025). 

In addition to optimizer selection, this 
study also applies a regularization strategy by 
adding a dropout layer at the end of the network to 
reduce the risk of overfitting. The training process 
is regulated through hyperparameter tuning with a 
learning rate configuration of 0.0001, a batch size 
of 64, and a maximum of 200 epochs. To prevent 
overfitting, the early stopping technique is used 
with monitoring of the validation loss, so that 
training can be stopped early when the model 
performance does not show significant 
improvement. This combination of optimization, 
regularization, and hyperparameter adjustment 
strategies is expected to produce an optimal 
model capable of generalizing well to the test data. 

 
6. Model Evaluation  

Model evaluation was conducted to 
assess the performance of each architecture in 
classifying six categories of waste. The evaluation 
process used separate validation and test data to 
ensure the model's generalization ability to new 
data. The metrics used included accuracy, 
precision, recall, and F1-score, which were the 
main indicators of classification performance. 
Here are the formulas and their explanations 
(Jannah et al., 2025). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 𝑥 100%    (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 𝑥 100%     (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 𝑥 100%     (3) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑥 (𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 𝑥 100%   (4) 

 
In addition, the best model is evaluated in 

more depth using a confusion matrix, which 
visualizes the distribution of predictions between 
classes, and ROC-AUC, which assesses the 
model's ability to distinguish between classes. The 
results of this evaluation form the basis for 
selecting the best model to be implemented in the 
automatic waste classification system. 
 
3. Results and Discussion 

This section presents the results of image 
classification experiments using three deep 
learning architectures—EfficientNetB3, 
MobileNetV2, and ResNet50—combined with 
several optimizers (Adam, AdamW, and SGD). 
The performance of each model is evaluated 
based on accuracy, precision, recall, and F1-score 
metrics to provide a comprehensive overview of its 
effectiveness. 

 
1. Model Evaluation Results 

Testing was conducted on all 
combinations of architectures and optimizers. The 
evaluation results are shown in Figures 3, 4, and 
5, which visualize the comparison of model 
performance based on accuracy, precision, recall, 
and F1-score metrics. This presentation facilitates 
analysis of the performance differences between 
the tested architectures. 

 

 
Figure 3. Model Evaluation of EfficientNetB3 

 
Figure 3 shows the results of evaluating 

the performance of the EfficientNetB3 model with 
three optimizers. The results show that the Adam 
optimizer provides the best performance with 
accuracy, precision, recall, and F1-score values of 
0.93. Meanwhile, AdamW and SGD produce 
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slightly lower but consistent values, namely 0.92 
on all evaluation metrics. This consistency 
indicates that the EfficientNetB3 architecture is 
quite stable. Although Adam provides a slight 
improvement, all three optimizers still produce 
competitive performance. 

 

 
Figure 4. Model Evaluation of MobileNetV2 

 
Figure 4 shows the results of evaluating 

the performance of the MobileNetV2 model with 
three types of optimizers. The graph shows that 
AdamW provides the best performance, with 
accuracy, recall, and F1-score values of 0.73, and 
precision of 0.74. Meanwhile, the Adam and SGD 
optimizers show relatively stable performance, 
each producing accuracy, recall, and F1-score of 
0.70, with precision of 0.71 for Adam and 0.72 for 
SGD. 

These results indicate that the choice of 
optimizer affects the performance of MobileNetV2, 
where AdamW is able to improve the model's 
ability to extract image features, resulting in more 
accurate predictions. 

 

 
Figure 5. Model Evaluation of ResNet50 

 
Figure 5 shows the performance of the 

ResNet50 model with three types of optimizers. 
For Adam, the model achieved an accuracy, 
recall, and F1-score of 0.91, with a precision of 
0.91. Meanwhile, for SGD, the accuracy, recall, 

and F1-score were also 0.91, but the precision 
was slightly higher at 0.92. Meanwhile, AdamW 
shows consistent values for all metrics, namely 
0.90. From these results, it can be seen that 
ResNet50 can perform classification well with all 
three optimizers, with SGD providing the best 
performance on the precision metric. 
3. Optimizer Comparison Analysis 

The use of the Adam optimizer provides 
consistently high performance on all three model 
architectures tested. EfficientNetB3 showed the 
best results with accuracy, precision, recall, and 
F1-score of 0.93, followed by ResNet50 with a 
score of 0.91, while MobileNetV2 lagged far 
behind with an accuracy of 0.70. This indicates 
that Adam is highly effective for more complex 
architectures such as EfficientNetB3 and 
ResNet50, while its performance is less optimal on 
lightweight architectures such as MobileNetV2. 

The AdamW optimizer produces 
performance close to Adam on all models, but with 
a slight decrease in metric values. EfficientNetB3 
recorded an accuracy of 0.92, ResNet50 recorded 
0.90, and MobileNetV2 actually experienced an 
increase compared to Adam with an accuracy of 
0.73. This shows that AdamW is more stable on 
lightweight architectures such as MobileNetV2, 
but is not as optimal as Adam on more complex 
models. 

The SGD optimizer shows relatively 
stable performance on the EfficientNetB3 and 
ResNet50 models with accuracies of 0.92 and 
0.91. However, the results on MobileNetV2 are 
less satisfactory with an accuracy of only 0.70. 
This indicates that the SGD optimizer requires 
more specific parameter adjustments, such as 
learning rate and momentum, in order to work 
optimally, especially on lightweight models. 
Compared to Adam and AdamW, SGD 
performance tends to be lower on this dataset. 

 
4. Comparative Model Analysis 

Based on the test results in Figures 3, 4, 
and 5, it can be seen that EfficientNetB3 with the 
Adam optimizer achieved the best performance 
with an accuracy, precision, recall, and F1-score 
of 0.93. ResNet50 ranks second with relatively 
stable performance in the range of 0.90–0.91, 
while MobileNetV2 shows much lower 
performance with an accuracy of around 0.70–
0.73. 

This difference can be explained by the 
complexity and representation capacity of each 
model. EfficientNetB3 is designed with a 
compound scaling approach that balances the 
depth, width, and resolution of the network so that 
it is more effective at capturing complex visual 
patterns in waste images. Meanwhile, 
MobileNetV2 is lighter and optimized for devices 
with computational limitations, so it tends to 
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sacrifice accuracy. ResNet50 is still competitive 
because it has a residual learning architecture, but 
its performance is slightly below EfficientNetB3. 

In terms of optimizers, Adam shows the 
best consistency in results for almost all models, 
especially EfficientNetB3. AdamW and SGD 
provide relatively similar performance, although 
slightly lower. This shows that the combination of 
the right architecture and the appropriate 
optimizer greatly affects the classification results. 

Comparing the results of this study with 
previous studies is important to show the position 
and contribution of this study in the field of deep 
learning-based waste classification. Several 
previous studies have used various network 
architectures to solve similar problems, with 
varying accuracy results depending on the 
complexity of the architecture, the dataset used, 
and the training method. The following table 
summarizes a comparison of the accuracy of 
several studies relevant to this study. 

 
Table 2. Comparison with Related Research 

Researcher Architecture Accuracy 

(Muslihati et 
al., 2024) 
 

NasNet Mobile 
 

82% 
 

(Pieters, 2025) CNN 52% 
(Fathurrahman 
& Akbar, 2024) 

SSD MobileNet 
V2 FPNLite 
640x640 

85% 

(Akbar, 2024) DenseNet169 92% 
Proposed 
Method 

EfficientNetB3 93% 

 
Based on Table 2, it can be seen that the 

method proposed in this study, namely 
EfficientNetB3, is capable of providing the highest 
accuracy of 93%, surpassing previous studies that 
used DenseNet169 (92%), SSD MobileNet V2 
FPNLite 640x640 (85%), NasNet Mobile (82%), 
and standard CNN (52%). This shows that the 
selection of the EfficientNetB3 architecture, which 
optimizes the balance between depth, width, and 
network resolution, is capable of providing better 
feature representation for waste classification 
tasks. Thus, this study makes a real contribution 
to improving the performance of deep learning-
based waste classification, while strengthening its 
potential application in sustainable waste 
management systems. 

 
5. Evaluation of the Best Model 

Based on the test results, the 
EfficientNetB3 model with the Adam optimizer was 
selected as the best model. This model was able 
to achieve an accuracy, precision, recall, and F1-
score value of 0.93, which was superior to other 
combinations of models and optimizers. 

 
Figure 6. Classification Report 

 
Figure 6 shows the consistency of values 

across all metrics, confirming that this model is not 
only accurate but also balanced in recognizing all 
waste classes. This consistency is important 
because each type of waste has different 
characteristics and needs to be predicted with the 
same level of reliability. Further analysis was 
conducted using a confusion matrix, which 
provides a detailed overview of the distribution of 
prediction results for each class.  

 

 
Figure 7. Confusion Matrix 

 
The results show that most of the waste 

images were predicted correctly, although there 
were some classification errors in classes with 
similar visual characteristics. In addition, the 
model performance evaluation was also visualized 
through the ROC (Receiver Operating 
Characteristic) curve and AUC (Area Under 
Curve) values. 

 

 
Figure 7. ROC Curve and AUC Value 

Figure 7 shows the Receiver Operating 
Characteristic (ROC) curve of the EfficientNetB3 
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model, with an Area Under the Curve (AUC) value 
of 0.92. This high AUC value indicates that the 
model is able to distinguish between positive and 
negative classes with a very good level of 
reliability. The ROC curve, which is well above the 
baseline diagonal line, confirms that the model 
has balanced sensitivity and specificity, so it does 
not focus on just one specific metric. These results 
reinforce the findings from the confusion matrix 
that the model has consistent classification 
capabilities across various waste classes, making 
it reliable for implementation in automatic 
classification systems. As a supplement, several 
sample image predictions are also shown. 

 
Table 1. Sample Results of Class Prediction 

Prediction 
Class 

Prediction Results 

Battery 

 
Glass 

 
Paper 

 
 
Table 1 shows several examples of model 

prediction results on test images. It can be seen 
that the model is capable of classifying various 
types of waste with a high confidence level, 
reaching more than 95% in sample tests from 
three classes. 
 
4. Conclusion 

Based on the test results, several deep 
learning architectures, namely EfficientNetB3, 
MobileNetV2, and ResNet50, showed different 
capabilities in waste classification. EfficientNetB3 
provided the best performance with the highest 
accuracy, precision, recall, and F1-score, 
indicating that this architecture is more effective in 
capturing complex waste image features. The use 
of different optimizers also affects model 
performance, with Adam and AdamW tending to 
converge faster than SGD. Thus, the combination 
of the EfficientNetB3 architecture and the 
appropriate optimizer can be implemented to build 
an accurate and efficient automatic waste 
classification system, supporting sustainable 
waste management.This study has several 
limitations, including the fact that the dataset used 
is still limited to six waste classes, the image 

variation in each class does not fully represent real 
conditions, and the computation time for some 
architectures is still quite high. 

For further research, it is recommended to 
increase the number and variety of datasets to 
make the model more robust, explore other deep 
learning architectures or model combinations, and 
optimize computation time to facilitate the 
implementation of automatic waste classification 
systems in real-world environments. 
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