JURNAL INFORMATIKA, Vol. 11 No. 2 October 2025, Page 138-148
ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247
DOI: https://doi.org/10.31294/inf.v12i2.25747

Performance Evaluation of RESTful API in Sales Target
Monitoring System for Direct Sales and Sales Canvassers

Suyud Widiono", Restian Dwi Friwaldi?, Afwan Anggara®

123 Universitas Teknologi Yogyakarta
JIn. Siliwangi (Ring Road Utara), Jombor, Sleman, Yogyakarta, Indonesia

Correspondence e-mail: suyud.w@uty.ac.id

Available Online:
08-10-2025

Revision:
22-09-2025

Submission:
28-04-2025

Acceptance:
02-10-2025

Abstract

In an increasingly competitive digital era, manual sales target monitoring often leads to delayed
information and inefficiency in decision-making. This research aims to develop a web and mobile-based
sales target monitoring system integrated with RESTful API to enhance the efficiency of monitoring the
performance of direct sales and sales canvassers. The system is developed using the Laravel
framework for the back-end and Flutter for the mobile application, with Agile methodology applied in the
development process. Testing is conducted using the Black Box Testing method to ensure the accuracy
of system functionalities, including user authentication, sales data management, and sales target
monitoring. Additionally, load testing is performed using Apache JMeter with scenarios of 500, 750, and
1000 users. The test results show that the system has stable performance with an average response
time of 758 ms for 500 users, 762 ms for 750 users, and 880 ms for 1000 users, all below the threshold
of 900 ms. The error rate is recorded at 0.00%, and the system throughput exceeds the set target,
indicating the system'’s reliability in handling simultaneous user requests. The conclusion of this research
shows that the implementation of RESTful API in the sales monitoring system can improve operational
efficiency, enable real-time data exchange, and support faster, data-driven decision-making. As a
recommendation, further development could include broader integration with mobile applications and
the implementation of Al-based analytics for sales strategy optimization.

Keywords: RESTful API, Sales Monitoring, Agile Methodology

1. Introduction

In today’s highly competitive business
environment, innovation and the effective use of
technology are critical for improving organizational
efficiency and effectiveness (Friwaldi & Widiono,
2024). Marketing strategies remain essential in
maintaining customer loyalty and expanding
market share (Ramadani, 2021). The digital era
has posed new challenges to traditional firms,
demanding the integration of conventional
marketing approaches with digital innovations
(Untung Supriadi, 2024). Strong digital literacy
within organizations is crucial to support
technology adoption and to develop adaptive
strategies that respond to market dynamics (Wono
et al.,, 2023). Effective use of social media
strengthens company—customer engagement,
improves brand awareness, and influences
strategic decision-making (Wono et al., 2023).
Business innovation, together with rapid
technological advancement, creates significant
competitive advantages in responding to fast-
changing market conditions (Wono et al., 2023).
Companies that succeed in the digital age are

those capable of combining traditional marketing
strategies with digital transformation, investing in
digital literacy, building smart social media
strategies, and fostering a culture of innovation
(Untung Supriadi, 2024; Wono et al., 2023). Prior
studies emphasize that real-time information
accelerates strategic decision-making in the
telecommunications industry, where proper data
integration is essential for enhancing unit
performance and data management quality
(Fadillah & Komalasari, 2024). Furthermore,
integrated information systems with robust
security measures are strongly correlated with
improved data protection and operational
performance (Nugroho et al., 2024).
Nevertheless, the main challenge in
implementing sales strategies lies in effectively
monitoring and managing sales targets. Lack of
integration often prevents unified data access,
accurate tracking, and innovation, particularly in
the logistics sector. Potential solutions include
adopting unified platforms or industry standards
such as EDI or open APIs to improve
interoperability (Karjono et al., 2024). Integrated

138

Copyright © 2025 Suyud Widiono, Restian Dwi Friwaldi, Afwan Anggara
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

https://doi.org/10.31294/inf.v12i2.25747
http://creativecommons.org/licenses/by-sa/4.0/
mailto:suyud.w@uty.ac.id

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025

ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

information systems are expected to enhance
efficiency and provide a strong foundation for
future developments in telecommunications
(Fadillah & Komalasari, 2024).

Insufficient automation and poor data
integration negatively affect sales performance
and competitiveness. Strategic decision-making
can be improved by adopting big data analytics
and artificial intelligence, enabling firms to achieve
competitive advantages and long-term growth
(Halim & Aspirandi, 2023). While digitalization
brings opportunities such as broader market
access and new business models, it also poses
risks such as cybersecurity threats and privacy
concerns (Akhtar Arig et al., 2023). Business
intelligence solutions, such as Microsoft Power B,
facilitate more efficient decision-making by
visualizing sales data (Pratama Bukhari et al.,
2024). Moreover, the integration of human
resource management practices—such as clear
HR policies and active HR manager involvement
in business strategy—has been shown to
positively influence organizational performance
and market share (Sigit Auliana & lis Nuraisah,
2021). These findings highlight the importance of
data-driven decision-making and strategic HR

integration to ensure competitiveness and
business sustainability.
Although numerous studies have

demonstrated the successful implementation of
RESTful APls in various sectors, their application
in the telecommunications industry remains
underexplored, especially for monitoring the
performance of direct sales and canvassers. For
example, Igbal & Nurwati (2023) focused on
dealer management systems but did not assess
system performance under heavy concurrent
usage. Eko Septian & Hutabri (2024) highlighted
financial data integration but did not address real-
time sales target monitoring. Similarly,
Ikhwanuzaki & Handayani (2024) emphasized
web-mobile integration for transactions, vyet
overlooked aspects of large-scale reliability and
load testing.

This study differs from prior research by
focusing on performance evaluation of RESTful
APIs in the context of direct sales and canvasser
target monitoring within the telecommunications
sector—a domain that has received little attention.
The system developed in this research is not only
functionally tested using Black Box Testing but
also stress-tested with Apache JMeter under
workloads of up to 1000 concurrent users to
assess stability and scalability.

Accordingly, the objectives of this research
are: (1) to design and implement a web and
mobile-based sales target monitoring system
integrated with RESTful API, (2) to verify its
functionalities using Black Box Testing, and (3) to
evaluate system performance using Apache

JMeter. The key contribution of this study is
providing empirical evidence that RESTful APls
can maintain stable performance under heavy
user loads, while also offering a replicable
implementation framework applicable to
telecommunications and other industries..

2. Research Methods

This study adopts the Agile Methodology, a
system development approach that emphasizes
iterative progress, continuous stakeholder
feedback, and flexible adaptation to changing
requirements. Projects are divided into short
cycles, or sprints, allowing ongoing evaluation and
adjustments (Adriana N Dugbartey & Olalekan
Kehinde, 2025). While Agile enhances
collaboration and responsiveness, it also faces
challenges such as organizational culture shifts
and the need for additional training (Hussien et al.,
2024; Zhen, 2024).

The system was designed to integrate
direct sales and canvassers, with the RESTful API
serving as the backbone for data exchange. The
development process consists of the following
stages:

e Figure 1. Research Framework — illustrates the
research workflow, from literature review,
requirements analysis, design,
implementation, to testing.

e Figure 5. System Architecture — presents the
interaction between the web application,
mobile application, RESTful API, and MySQL
database.

e Figure 6. Use Case Diagram — shows the
interaction of system actors (admin and sales)
with the main system functions.

e Figure 7. Entity Relationship Diagram (ERD) —
describes the database schema covering
users, products, sales, and sales targets.

Each figure is referenced in the text and
briefly explained to ensure clarity.

The back-end of the system was developed
using Laravel, while the mobile application was
built with Flutter, and the web interface was styled
with Tailwind CSS. Functional testing was carried
out using Black Box Testing to verify user

authentication, sales data management, and
target monitoring features.
In addition, performance testing (load

testing) was conducted using Apache JMeter, an
open-source tool widely used for RESTful API
evaluation (Abbas et al.,, 2017). JMeter was
chosen for its ability to simulate thousands of
concurrent users, flexible configuration,
HTTP/HTTPS protocol support, and visual
reporting capabilities.

Performance thresholds were defined
according to industry standards (Jiang & Hassan,
2015):

http://ejournal.bsi.ac.id/ejurnal/index.php/ji

139

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025

ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

e Response time <900 ms
e Errorrate<1%
e Throughput = 80 requests/sec

The API endpoints under test included:

a. Login Scenario — authentication with valid and
invalid credentials.

b. Sales Data Input Scenario — submission of
valid and invalid sales records.

c. Target Monitoring Scenario — real-time access
to sales target data.

d. Error Handling Scenario — validation of system
behavior with empty or incorrectly formatted
inputs.

This methodological framework ensures a
comprehensive evaluation of the system, covering
both functional accuracy and performance stability
under high user loads.

This research uses Agile Methodology, a
transformative approach to system development
that emphasizes iterative progress and continuous
feedback from stakeholders. This approach
enhances collaboration, flexibility, and rapid
adaptation to changing needs. Agile divides
projects into small iterations or "sprints," allowing
for continuous evaluation and adjustment (Adriana
N Dugbartey & Olalekan Kehinde, 2025).
Stakeholder involvement helps define needs and
validate work results (Adriana N Dugbartey &
Olalekan Kehinde, 2025; Djutalov et al., 2024).
Although Agile increases response speed and
result quality, challenges such as cultural change
and training needs can hinder successful
implementation (Hussien et al., 2024; Zhen,
2024).

Figure 1. is a system development flow
diagram. The following is an explanation of each
part of the diagram:

Theory Fundamental & Literature Study,
this section shows the initial stage in system
development, which includes literature study and
fundamental theory to understand the concepts to
be applied. In the initial stage of this research, the
researcher conducted a literature study by
analyzing various relevant sources such as
journals, scientific articles, and ebooks related to
the topic of sales target monitoring and RESTful
APl implementation.

Data Collection, the process of collecting
the necessary data for research and analyzing
system requirements, where the researcher
collects data from direct sales and sales personnel
through interviews and from related secondary
data sources.

System Requirements Analysis,
identification of functional and non-functional
system requirements, including user
authentication, sales data management, and
target monitoring. This system requirements

analysis stage is based on the collected data,
aiming to determine the features and
specifications the system must have.

The system is designed to integrate direct
sales and sales canvassers, with RESTful API as
the backbone of data exchange. The development
process includes the following stages:

Theory Fundamental System

& —+ Data Collection '—v Requirements

Literature Study Analysis

System Design

RESTiul Mabile
API App
Design Design

Database
Design

l

|:{ Implementation & Whitebox Testing |

Daployment }—-

Sales Target
Monitoring System

Blackbox
Testing

Figure 1. Research Framework

System Design, designing the system
architecture, including front-end (web and mobile
interfaces), back-end (RESTful API), and
database (MySQL). Entity-Relationship Diagram
(ERD) and flowchart are used to model the
system's structure and workflow. This system
design stage consists of several main
components:

o Web App Design: Web application design.

o RESTful API Design: API design used for
system communication.

e Mobile App Design:
design.

o Database Design: Database design to store
the necessary information.

Implementation & Whitebox Testing,
development using the Laravel framework for
back-end and Tailwind CSS for front-end. The
mobile application is built using Flutter. System
implementation based on the created design,
followed by whitebox testing (internal testing of the
program code).

Deployment, the process of launching or
deploying the system after initial testing.

Blackbox Testing, testing system
functionalities including user authentication, sales
data management, and target monitoring from the
user's perspective without viewing the internal
code.

Mobile application

Sales Target Monitoring System, the final
result of this development process is a sales target
monitoring system that has gone through all the
above stages.

http://ejournal.bsi.ac.id/ejurnal/index.php/ji

140

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025

ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

This diagram shows the workflow in system
development, covering several stages from initial
research to implementation and testing, with a
focus on Black Box Testing and load testing using
Apache JMeter. Black Box Testing evaluates
software functionality without viewing its internal
structure, while load testing assesses
performance under various conditions (Jiang &
Hassan, 2015). Black Box Testing is conducted
based on software specifications to ensure
external functions work as needed (Ostrand,
2002). Various types of testing help identify
defects and improve software quality (Ostrand,
2002; Saeed & Amjad, 2010) (Ostrand, 2002).
Load testing with Apache JMeter simulates
multiple users to measure system performance
(Abbas et al., 2017).

3. Results and Discussion

The developed system successfully
integrates direct sales and canvasser data
through a RESTful API, enabling real-time data
exchange. The web and mobile interfaces provide
convenient access for administrators and sales
staff to track targets and performance.

Table 1. System Performance Test Results

Users R_esponse Throughput Error
Time (ms) (req/sec) Rate (%)

500 758 90.30 0.00

750 762 124.30 0.00

1000 880 159.10 0.00

Performance evaluation using Apache
JMeter confirmed that the system can handle up
to 1000 concurrent users. As shown in Table 1 and
Figures 5-7, the average response time increased
with higher loads: 758 ms (500 users), 762 ms
(750 users), and 880 ms (1000 users). Despite this
increase, all values remain below the 900 ms
threshold (Jiang & Hassan, 2015), indicating
stable system performance.

Tables and Figures are presented in Table
1 and Figure 1, and an explanation of the tables
and figures must be given.

Throughput increased along with the
number of users, reaching 159.10 reqg/sec at 1000
users, well above the minimum threshold of 80
reg/sec. Meanwhile, the error rate remained 0%
across all scenarios, reinforcing the system’s
reliability.

Compared with prior studies, these results
highlight significant advantages. For instance, the
REST API-based dealer system by Igbal &
Nurwati (2023) did not evaluate performance
under large concurrent loads. Similarly, Eko
Septian & Hutabri (2024) focused on financial data
integration without addressing real-time
monitoring, while lkhwanuzaki & Handayani
(2024) emphasized web—mobile integration but

did not consider load testing. In contrast, this study
provides empirical evidence that RESTful APIs
can maintain stable performance with up to 1000
users, offering a scalable solution for sales
monitoring in the telecommunications sector.

Response Time under Different User Loads

800

h
(=1
(=]

4001

Response Time (ms)

[
b=
o

700 500 1000

Number of Users

500 500 500

Figure 2. Response Time under Different User
Loads

Throughput under Different User Loads
160
140
120
100}
80
60

40

Throughput {reg/sec)

20

700 500 1000

Number of Users

500 500 500

Figure 3. Throughput under Different User Loads

Error Rate under Different User Loads
0.04
0.02

0.00

Error Rate (%)

-0.02

—0.04

700 800 900 1000
Number of Users

500 600

Figure 4. Error Rate under Different User Loads

The changes in response time are
illustrated in Figure 2, showing that although the
response time increased with higher loads, it
remained within acceptable limits. The value of
880 ms under 1000 concurrent users is below the
900 ms threshold (Jiang & Hassan, 2015) and still
complies with the ITU-T E.800 (2008)
recommendation, which defines 1000 ms as the
upper limit for interactive telecommunication
services. This confirms that the system remains
responsive even under heavy loads.

http://ejournal.bsi.ac.id/ejurnal/index.php/ji

141

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025

ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

Meanwhile, Figure 3 demonstrates the
upward trend of throughput, reaching 159.10
reg/sec at 1000 users. This is significantly higher
than the minimum standard of 80 req/sec (Jiang &
Hassan, 2015), confirming that the system
maintains strong processing capacity.

Furthermore, Figure 4 presents the error
rate, which consistently remained at 0% across all
test scenarios. This high reliability aligns with
Nielsen’'s (1993) usability guideline, which
emphasizes that even minimal failures in
interaction can degrade user satisfaction.

3.1. System Architecture Model

Figure 5 shows the proposed system
architecture model, explaining that the web-based
front-end application acts as the user interface,
while the front-end for the mobile application is
embedded on each user's device. RESTful API
serves as an efficient intermediary for data
exchange in JSON format.

Client

2
[E———
Web Browser

=

Mobile App

REST API
(back-end)

Request
(GET, POST, PUT, DELETE)

Response
(ISON])

Figure 5. System Architecture

The Architecture Diagram presented in
Figure 5 illustrates a client-server system working
with REST APl to exchange data between
web/mobile applications and the server through
the HTTP protocol. This diagram represents the
architecture in the development of modern cloud-
based or web service applications.

The server consists of several main
components: Front-end: The user interface
displayed in the web or mobile application. REST
API (Back-end): An API service that handles client
requests, processes them, and returns results in
JSON format. Database Server: The data storage
used by the system.

Communication flow: Client (Web/Mobile)
sends a request to the server. REST API in the
backend processes the request and
retrieves/modifies data in the Database. REST
API returns a response in JSON format to the
Client. Client displays the received data to the
user.

The Client (User) part consists of two types
of applications that can be used by the user: Web
Browser: A web-based application accessed
through browsers (Chrome, Firefox, etc.). Mobile
App: A mobile application running on devices like
phones or tablets.

The client sends requests to the server
using HTTP methods, such as:
e GET — To retrieve data from the server.
e POST — To send new data to the server.
e PUT — To update existing data on the
server.
e DELETE — To delete data on the server.

The server responds to requests with JSON
data format.

3.2. System Functionality
The system has several main features,
including:
e User Authentication: Ensures only

registered users can access the system.

e Sales Data Management: Allows adding,
editing, and deleting sales data.

e Target Monitoring: Provides real-time
information on sales target achievement.

o Reporting: Generates automatic reports for
analysis and decision-making.

Details of the system functionality are
illustrated in the following Use-Case Diagram:

Figure 6. Proposed Use Case Diagram

Figure 6 is a Use Case Diagram used in
UML (Unified Modeling Language) based system
modeling, designed for the system. It is a design
of the functional elements of a system used to
manage various business aspects, namely
product, sales, user, and target aspects. The
diagram also illustrates how the Admin and Sales
actors interact with the system. The Admin actor
has more access, while the Sales actor only has
access to perform sales. All users must log in
before accessing system features. This diagram is
very useful for understanding the system workflow
and who is authorized to perform certain actions.

Actors in the System, there are two actors
in this system: Admin and Sales, Admin (as a user
with full access rights), and Sales (as a user with
limited access rights).

http://ejournal.bsi.ac.id/ejurnal/index.php/ji

142

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025

ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

Use Case (Functions in the System),
several use cases that can be performed by each
actor:

a. Admin can perform:

e Manage Products

e Manage Sales

¢ Manage Users

o Manage Targets

b. Sales can perform:

e Sales

The following is a brief explanation of each
element mentioned:

1) Use Case Mengelola Produk: This section is
used to add, edit, or delete products from the
system.

2) Use Case Mengelola Sales: This section is
used to manage sales data, including
transaction information and sales
performance.

3) Use Case Mengelola Users: This section is
used to manage system users, such as adding
or deleting users, and setting access rights.

4) Use Case Mengelola Targets: This section is
used to set or monitor sales or performance
targets.

5) Use Case Login: This section is where users
can log into the system with their credentials.

6) Use Case Penjualan: This term refers to the
process or data related to sales.

Relationships between Use Cases are
marked with <<include>>, meaning that a function
requires another function to run. Every use case in
the system requires login first, shown by the
<<include>> relationship from all processes to
Login. Sales require login first, so Sales must log
in before performing sales transactions.

3.3. Database Design

Figure 7 shows the database design
visualized in an Entity Relationship Diagram
(ERD), used to model the database structure used
in the developed system. It is a database design
diagram and provides an overview of the entity
tables and database fields to be created. This
diagram is used to design the database structure
in the sales system, where there is a relationship
between users, sales, products, sales
transactions, and sales targets.

The following is an explanation of the ERD
in Figure 7, consisting of Main Entities,
Relationships Between Entities, and Attributes in
Each Entity. The ERD in Figure 7 shows several
main entities in the system:

e User (system user)
Sales (salesperson)
Sales (sales transaction)
Product (sold item)
Target (sales target)

Figure 7. Proposed ERD

The diagram also shows Relationships
Between Entities: The User entity has a
relationship with the Sales entity, meaning there
are users who act as salespersons. The Sales
entity performs Sales, which is related to
Products. Target is related to Sales, meaning
there are targets that must be achieved by
salespersons.

The diagram also shows Attributes in Each
Entity, each entity has several attributes that store
related information:

e User has attributes id, name, email, password,
role, etc.

e Product has attributes id, name, price, stock,
etc.

e Sales stores transaction data with attributes id,
date, quantity, etc.

3.4. REST API Back-end Design

Table 2 User Authentication Endpoints

contains a list of APl endpoints used to handle

user authentication and management processes

in the system.

Table 2. Authentication Endpoints.

. HTTP -
Endpoint Method Function
IregisterUser ~ POST Input new user.
/loginUser POST User authentication.
/logout POST User logs out of the system.
luser/{id} PUT Update user.
Juser/id} DELETE DELETE Delete user.

The following is an explanation of each
Authentication Endpoint:
1) /registerUser

Used to register a new user into the system
using the HTTP POST method. The data sent
includes name, email, password, and user role.
Upon success, the user is saved in the database.
2) /loginUser

Used to authenticate the user, user data is
sent using the HTTP POST method based on
email and password. If the credentials are correct,
the system generates an access token used to
access other services in the system.

http://ejournal.bsi.ac.id/ejurnal/index.php/ji

143

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025

ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

3) /logout

Used to log the user out of the system and
remove the authentication token, making the
user's access in this session invalid, so the user
must log in again to access the system.

4) /userlid}

Used to update user data using the HTTP
PUT method based on ID. Data that can be
updated includes name, email, password, and
user role.

5) luser/{id}

Used to delete user data from the system
based on user ID, sending the user ID to delete
system data using the HTTP DELETE method.
After deletion, the user can no longer access the
system.

There are several other Endpoints built:
User Management Endpoint, Sales Management
Endpoint, Product Management Endpoint, Sales
Target Management Endpoint, and Sales
Management Endpoint.

3.5. Implementation
3.5.1. Database Implementation

The RDBMS used is MySQL, which is used
as the system's data storage. Data stored in
database tables includes user data, sales data,
sales targets, products, and sales data. The REST
API Back-End performs CRUD operations on the
tables in the database according to requests
received from the Front-End. The database
structure is designed to facilitate inter-table
relationships and maintain system performance
when handling sales transactions.

u o e perjuakana
i it - biginl(20) unsgned

fe USETS

fimastamg

Figure 8. ERD Implementation to Database

Figure 8 shows the database structure
implementation of the ERD design, illustrating the
relationships between tables in the system's
database. The diagram depicts the database
structure for the sales management system,
focusing on users, sales teams, products, sales
transactions, and sales targets. The relationships
between tables allow the system to manage data
effectively, ensuring each sale and target is linked
to the appropriate user and product. The

relationships between database tables are

explained as follows:

e users — sales (1-to-1) — A user can be a
salesperson.

e sales — sales (1-to-many) — A salesperson
can perform many sales transactions.

e products — sales (1-to-many) — A product can
be sold in many sales transactions.

e sales — targets (1-to-many) — Each
salesperson can have many sales targets.

e products — targets (1-to-many) — Each sales

target is linked to a specific product.

3.5.2. Back-End Implementation

In the Back-End Server implementation, the
system is built using Laravel 10 as the main
framework for developing the RESTful API.
Laravel is chosen for its structured architecture,
good security support, and ease of database
management using Eloquent ORM. The database
used in this system is MySQL RDBMS, which
plays a role in storing and managing user data,

sales, products, sales targets, and sales
transactions.
The system consists of several main

endpoints that support business processes. The
first endpoint is the User Authentication Endpoint,
which includes registration (*/registerUser’), login
(‘/loginUser’), logout (‘/logout’), and user data
management (‘/user/{id}’) for updating and
deleting user information. This endpoint allows
users to securely access the system using an
authentication token generated after login.

In addition to authentication, there is a User
Management Endpoint that allows the admin to
manage registered user data in the system. The
admin can perform CRUD (Create, Read, Update,
Delete) operations on the user table, such as
adding new users, editing user data, viewing user
lists, and deleting unnecessary accounts.

Next, the Sales Management Endpoint is
designed to manage information related to the
sales team. In this endpoint, the admin can
register new salespersons, update their
information, and delete inactive sales data. This
sales data is closely related to user information
(‘users’) and sales transactions (‘sales’).

For managing the products sold, the system
provides a Product Management Endpoint, which
allows the admin to add new products to the
system, update product data such as product
name and price, and delete unavailable products.
Each sales transaction will refer to the products
stored in the products table, ensuring the
relationships between data remain structured.

Additionally, the system has a Sales Target
Management Endpoint, used to set targets that
must be achieved by the sales team. The admin
can set targets based on month, product, and the
amount to be sold by each salesperson. This

http://ejournal.bsi.ac.id/ejurnal/index.php/ji

144

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025

ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

target data will then be used to monitor the
salesperson's performance in achieving the set
goals.

Finally, the Sales Management Endpoint is
responsible for handling sales transactions. This
endpoint allows salespersons to record sales that
have been made, including the products sold and
the quantity sold. Each transaction will be
recorded in the sales table, linked to the users
table (as the salesperson performing the
transaction) and the products table (the product
sold).

All endpoints in this system are
implemented using Laravel APl Routes, where
each request is controlled by a controller that
handles business logic. Data validation is
performed using Laravel Request Validation, while
database access is managed with Eloquent ORM
to ensure efficiency in data retrieval and
manipulation. By using JWT or Sanctum
authentication middleware, each request to the
system is first checked to ensure only authorized
users can access certain features.

With a structured architecture and well-
integrated between Laravel 10 and MySQL, this
system is able to provide an efficient solution in
managing user data, sales, products, sales
targets, and transactions occurring in business
processes.

3.5.3. Front-End Implementation

The interface in this system involves Front-
End development using Laravel version 11.7.0.
The Laravel framework is chosen for its ability to
manage front-end workflows efficiently and
provide various features that facilitate
development. Additionally, Tailwind CSS is
implemented to ensure a responsive interface,
able to adapt well to various screen sizes and
devices, and speed up development by providing
utility classes that facilitate interface element
organization.

The login process aims to confirm the
identity of users who want to access the
application and identify the access rights granted
to them. In the context of this system, users are
required to enter their email and password. If the
account information is not registered in the
database, a warning message will appear stating
that the account is not found.

With this mechanism, the system ensures
that only authorized users, such as admins and
salespersons, can access important information,
thus maintaining the security of sensitive sales
data.

Other parts of the Web-based Front-End
implementation include: Admin Dashboard Page,
Salesperson Target Data Page, Product Data
Page, Salesperson Dashboard Page, Sales
Target Page

4 Satria

Masuban akun anda

a. Web App Login b. Mobile App Login

Figure 9. Login Page

Other parts of the Mobile-based Front-End
implementation besides the Login Form above
include: Sales Dashboard, Sales Page, Add and
Edit Sales Form.

3.6. System Testing

Testing on this system was carried out
using 2 (two) methods, namely the Backend API
load testing method and the Black-Box Testing
testing method.

3.6.1. API Back-end Load Testing Results

I.I. Iﬁ | Ilil

Wb of ihsers [Thrsads)

Figure 10. API Back-end Load Testing Results

The graph in Figure 10 shows the results of
load testing using Apache JMeter to measure API
performance based on three main metrics:

1) Response Time (ms), Shown by the blue bar
graph. lllustrates the average time the API
takes to respond to user requests. It can be
seen that the response time increases as the
number of users increases (500, 750, and
1000). For 500 users, the response time is 758
ms, then slightly increases to 762 ms for 750
users, and significantly increases to 880 ms for
1000 users. This indicates that additional load
begins to impact API response time.

2) Throughput (requests/sec), shown by the
green bar graph. Measures the number of
requests processed by the API per second.
Throughput increases as the number of users
increases, from 90.3 requests/sec (500 users)
to 124.3 requests/sec (750 users), and finally
159.1 requests/sec (1000 users). This shows
that the system is still able to handle more
requests without experiencing overload.

3) Error Rate (%), shown by the red bar graph.
Measures the percentage of errors that occur

http://ejournal.bsi.ac.id/ejurnal/index.php/ji

145

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025

ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

during testing. The value is 0% in all scenarios,
meaning the API successfully handles all
requests without failure, despite the increase in
the number of users.

3.6.2. Black-Box Testing Results

Black-box testing is conducted to ensure
that all system features function as expected. The
test results show that the system can:
Validate user login correctly.
e Add, edit, and delete sales data.
e Monitor sales targets in real-time.
e Generate accurate reports.

System testing is conducted using the Black
Box method to ensure that all functionalities in the
system work according to the specified
requirements. This method focuses on testing
system inputs and outputs without viewing the
source code or internal structure.

1) Black Box Testing Method
Black Box Testing is conducted by testing

each main system feature, including:

e User Management (registration, login, logout,
and access rights management)

o Sales Data Management (input, update, and
deletion of sales data)

e Sales Target Monitoring (setting targets,
achievement, and data visualization)

e RESTful APl Integration (communication
between front-end and back-end)

2) Testing Scenarios and Results

Testing is conducted based on several
scenarios reflecting real-world system usage. The
following is a summary of the results:

Table 3. Authentication Endpoints

No Feature Tes“ng Expected Result
Scenario Result
. Input correct User successfully
1 Login credentials logs in (oK
) Input wrong Error message
2 Login password appears (oK
Input Sales . Data saved in
3 Data Inputvalid data =\~ 70 Mok
Input Sales Error warning
4 Data Input empty data appears MoK
Target Access the sales Data is displayed
Monitoring target page correctly (oK
Accessing data Data is
6 (E;EJ g‘m with the GET displayed in Mok
P method JSON format
Sending data Data
7 PEoniTo/;\r:Dtl using the POST successfully MoK
P method added

The test results show that all main system
features function according to the specified
requirements. No critical errors are found during
testing, and all scenarios run as expected.
Therefore, the system is considered to have met
user needs and is ready to be implemented in
company operations.

3.7. Discussion

The implementation of this system shows
significant improvement in the efficiency of sales
target monitoring. RESTful API enables fast and
integrated data exchange, while Agile
methodology ensures the system can adapt to
changing needs. The user-friendly web and
mobile interfaces make it easier for administrators
and sales personnel to access information and
perform their tasks.

The developed sales target monitoring
system using RESTful API has been successfully
implemented in the form of a web-based
application. The Laravel framework is used to
build the backend RESTful API, while the frontend
is developed using responsive web-based
technology and mobile-based using Flutter.
MySQL is used as the database management
system to store information related to sales, sales
targets, and user data.

The system architecture is designed to
enable efficient communication between front-end
and back-end through RESTful API. With this
approach, the system can access and update data
in real-time, thereby improving accuracy and
efficiency in sales target monitoring.

Black Box Testing is conducted to ensure
that each system feature functions according to
the specified requirements. The test results show
that all main features, including login, sales data
input, target monitoring, and RESTful API
communication, work well without critical errors.

Load Testing with Apache JMeter aims to
measure system performance in handling multiple
users simultaneously. The testing scenarios
involve 500, 750, and 1000 users with the
following results:

e 500 users: Response time 758 ms, throughput
90.30 requests/sec

e 750 users: Response time 762 ms, throughput
124.30 requests/sec

e 1000 users: Response time 880 ms, throughput
159.10 requests/sec

The test results show that the system can
handle increasing numbers of users without
significant performance degradation.

Performance analysis of the implemented
RESTful APl shows stable and optimal
performance in handling data requests. With the
use of JSON format as the data exchange
medium, the system can quickly access and
display information. Additionally, the API
architecture allows good scalability for future
development.

The success of this system is also
supported by the use of modern technologies such
as Laravel and Flutter, ensuring optimal system
performance and good scalability. Black-box
testing confirms that this system is reliable and
meets user needs.

http://ejournal.bsi.ac.id/ejurnal/index.php/ji

146

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025

ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

4. Conclusion

This research has successfully developed a
web-based sales target monitoring system with
RESTful APl implementation to enhance the
effectiveness of monitoring direct sales and sales
canvassers' targets. The use of RESTful API
enables real-time data exchange, more flexible
integration with other systems, and increases the
speed of access and information management.

The conducted tests show that this system
has high reliability and stable performance. Based
on the Black Box Testing results, all main system
features, including login, user management, sales
recording, and target monitoring, have functioned
according to the specified requirements.
Additionally, load testing with Apache JMeter
shows that the system can handle increasing
numbers of users without significant performance
degradation. The response time remains below
the specified threshold (900 ms), with an error rate
of 0.00% and throughput meeting performance
standards. The main advantage of this system is
its ability to improve efficiency and accuracy in
monitoring sales target achievement. With the use
of the Laravel framework and MySQL database,
this system has a scalable structure and can be
further developed.

However, there are still some limitations,
such as the completeness and integration of
features in the mobile application with other
external APls, such as accessing maps to track
salesperson locations and others. Therefore, for
further development, it is recommended to
integrate the system with other external systems
with the mobile application to increase flexibility
and effectiveness in real-time sales monitoring.
Additionally, enhancing Al-based analytics
features can help in more accurate and strategic
sales target predictions.

With the obtained results, this research
contributes to the application of RESTful API for
sales monitoring systems, especially in the
telecommunications industry, and serves as a
foundation for the development of more advanced
monitoring technologies in the future.

Reference

Abbas, R., Sultan, Z., & Bhatti, S. N. (2017).
Comparative Study of Load Testing Tools:
Apache JMeter, HP LoadRunner, Microsoft
Visual Studio (TFS), Siege. Sukkur IBA
Journal of Computing and Mathematical
Sciences, 1(2), 102—-108.
https://doi.org/10.30537/sjcms.v1i2.24

Adriana N Dugbartey, & Olalekan Kehinde.
(2025). Optimizing project delivery through
agile methodologies: Balancing speed,
collaboration and stakeholder engagement.
World Journal of Advanced Research and
Reviews, 25(1), 1237-1257.

https://doi.org/10.30574/wjarr.2025.25.1.01
93
Akhtar Ariq, M., Hanggara Putra Anwar, N., &
Aulia Rahma, S. (2023). Dampak
Digitalisasi Terhadap Bisnis Dan
Perdagangan. Journal of Comprehensive
Science (JCS), 2(6), 1801-1816.
https://doi.org/10.59188/jcs.v2i6.401
Djutalov, R., Irham, M., Putra, A. D., Elistiawan,
A., & Syah, R. F. (2024). Agile Methodology
in Web and Mobile Based App of Tracer
Study and Career Center. Brilliance:
Research of Artificial Intelligence, 4(1),
453-462.
https://doi.org/10.47709/brilliance.v4i1.4372
Eko Septian, D., & Hutabri, E. (2024). Optimasi
Sistem Akuntansi Berbasis Web dengan
Integrasi RESTful API: Studi Kasus pada
PT Segara Catur Perkasa dalam Bidang
Pemanduan dan Penundaan Kapal
Menggunakan Metode Scrum. Jurnal
Informasi Dan Teknologi, 70-79.
https://doi.org/10.60083/jidt.v6i1.476
Fadillah, I. Z., & Komalasari, R. (2024). Rancang
Bangun Sistem Informasi Manajemen
Operation OLT Aktual dan Ter-Integrasi.
TeknolS : Jurnal limiah Teknologi Informasi
Dan Sains, 14(1), 80-90.
https://doi.org/10.36350/jbs.v14i1.234
Friwaldi, R. D., & Widiono, S. (2024).
Optimization of Direct Sales and Sales
Canvasser Sales Target Monitoring With
RESTful API Implementation on Web-
Based Monitoring System. Journal of
Applied Informatics and Computing, 8(2),
623-630.
https://doi.org/10.30871/jaic.v8i2.8644
Halim, M., & Aspirandi, R. M. (2023). Peran
Akuntansi Manajemen Strategik Terhadap
Pengambilan Keputusan Bisnis Melalui
Analisis Big Data Dan Artificial Intelligence:
Suatu Studi Literature Review. JIAI (Jurnal
limiah Akuntansi Indonesia), 8(1), 110-128.
https://doi.org/10.32528/jiai.v8i1.11878
Hussien, H. S., Mhd Salim, M. H., Mat Nayan, N.,
ljab, M. T., Julita, A. R. B., Mukhtar, Z.,
Shahril, M. S., Ramli, N. F. L., & Omar, A.
M. (2024). Development Of Student-
Centered Graduate Supervision
Management System Based On Agile
Methodology. Journal of Information
System and Technology Management,
9(36), 53-66.
https://doi.org/10.35631/JISTM.936004
Ikhwanuzaki, M. F., & Handayani, I. (2024).
Implementasi Web Service Menggunakan
Restful Api pada Aplikasi Pemesanan
Sarung Goyor Suhutex. Jurnal Riset Dan
Aplikasi Mahasiswa Informatika (JRAMI),
5(1), 191-199.

http://ejournal.bsi.ac.id/ejurnal/index.php/ji

147

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025

ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

https://doi.org/10.30998/jrami.v5i1.10486
Igbal, M., & Nurwati, N. (2023). Penerapan
Sistem Terintegrasi Menggunakan Restful
Api Pada Dealer Management System
Panca Niaga Sei Piring. Journal Of Science
And Social Research, 6(1), 219.
https://doi.org/10.54314/jssr.v6i1.1161
Jiang, Z. M., & Hassan, A. E. (2015). A Survey
on Load Testing of Large-Scale Software
Systems. IEEE Transactions on Software
Engineering, 41(11), 1091-1118.
https://doi.org/10.1109/TSE.2015.2445340
Karjono, K., Diah Kusumawati, E., Karmanis, K.,
& Kusumaningrum, D. (2024). Transformasi
Pemasaran Industri Logistik Dalam
Meningkatkan Efisiensi Dan Keunggulan
Kompetitif. Majalah limiah Bahari Jogja,
22(2), 125-136.
https://doi.org/10.33489/mibj.v22i2.364
Nugroho, A., Syaifudin, R., & Fauziawan, A. I.
(2024). Analisis Dampak Keamanan IoT
dan Integrasi Sistem Informasi terhadap
Perlindungan Data dan Kinerja Operasional
di Perusahaan Telekomunikasi Yogyakarta.
Jurnal Multidisiplin West Science, 3(05),
611-623.
https://doi.org/10.58812/jmws.v3i05.1197
Ostrand, T. (2002). Black-Box Testing. In
Encyclopedia of Software Engineering.
Wiley.
https://doi.org/10.1002/0471028959.s0f022
Pratama Bukhari, A., Hafidz, R., & Prio
Pamungkas, R. W. (2024). Analisis
Business Intelligence Data Penjualan Pt

Ambulance Pintar 2021. Jatl (Jurnal
Mahasiswa Teknik Informatika), 8(4), 7184—
7189.
https://doi.org/10.36040/jati.v8i4.10141

Ramadani, A. (2021). Strategi Pemasaran.
https://doi.org/10.31219/0sf.i0o/68v59

Saeed, U., & Amjad, M. A. (2010). BLACK BOX
TESTING STRATEGIES FOR
FUNCTIONAL TESTING: ISTQB: Black Box
testing Strategies used in Financial Industry
for Functional testing.

Sigit Auliana, & lis Nuraisah. (2021). Integrasi
Strategis Sumber Daya Manusia Untuk
Kinerja Organisasi. Jurnal Bina Bangsa
Ekonomika, 14(1), 79-92.
https://doi.org/10.46306/jbbe.v14i1.60

Untung Supriadi. (2024). Menghadapi Tantangan
Era Digital: Inovasi dalam Manajemen
Pemasaran untuk Perusahaan Tradisional.
JPNM Jurnal Pustaka Nusantara
Multidisiplin, 2(1).
https://doi.org/10.59945/jpnm.v2i1.138

Wono, H. Y., Supriaddin, N., Amin, F., Indriastuti,
Y., & Sufa, S. A. (2023). Media Sosial,
Literasi Digital, Dan Inovasi Bisnis Trikotomi
Baru Dalam Manajemen Strategi. Branding:
Jurnal Manajemen Dan Bisnis, 2(1).
https://doi.org/10.15575/jb.v2i1.29329

Zhen, Z. (2024). Research and Practice of Agile
Software Development Methods. Applied
and Computational Engineering, 114(1),
186—190. https://doi.org/10.54254/2755-
2721/2024.18284

http://ejournal.bsi.ac.id/ejurnal/index.php/ji

148

