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Abstract 

Bug detection in Python programming is a crucial aspect of software development. This study develops 
an automated bug detection system using feature extraction based on Abstract Syntax Tree (AST) and 
a Random Forest Classifier model. The dataset consists of 100 manually classified bugged files and 
100 non-bugged files. The model is trained using structural code features such as the number of 
functions, classes, variables, conditions, and exception handling. Evaluation results indicate an 
accuracy of 86.67%, with balanced precision and recall across both classes. Confusion matrix analysis 
identifies the presence of false positives and false negatives, albeit in relatively low numbers. The 
accuracy curve suggests a potential overfitting issue, as training accuracy is higher than testing 
accuracy. This study demonstrates that the combination of AST-based feature extraction and Random 
Forest can be an effective approach for automated bug detection, with potential improvements through 
model optimization and a larger dataset. 
 
Keywords: Abstract Syntax Tree, Random Forest, Machine learning. 
 
1. Introduction 

Bug detection in Python programming is a 
crucial aspect of developing high-quality software 
(Adarsh et al., 2023; Albattah & Alzahrani, 2024; 
Hammouri et al., 2018; Immaculate et al., 2022; 
Verma, 2024). Bugs can arise from various 
sources, including syntax errors, logic errors, or 
even improper use of Python’s dynamic features. 
Research has shown that Python programming 
has unique characteristics that influence the 
patterns of bugs that emerge. For instance, an 
empirical study conducted by Hu and Zhang found 
that numerous previously undetected bugs exist in 
commonly used Python libraries such as Pillow, 
highlighting the need for more effective bug 
detection tools (Hu & Zhang, 2022). Additionally, 
Chen et al. revealed that dynamic code changes 
during bug fixing significantly impact software 
quality, making it essential to understand how 
these features interact when addressing bugs 
(Chen et al., 2017). 

In this context, the development of tools 
and techniques for bug detection becomes highly 

critical. For example, BugsInPy is a database 
designed to support research and development of 
testing and debugging tools specifically for Python 
programs, reducing barriers to research in this 
field (Widyasari et al., 2020).  
Moreover, a bug prediction model developed by 
Khan et al. demonstrated that hyperparameter 
optimization in machine learning algorithms can 
improve the accuracy of software bug prediction 
(Khan et al., 2020). Furthermore, research by 
Hammouri et al. indicated that applying machine 
learning algorithms such as Naïve Bayes, 
Decision Trees, and Artificial Neural Networks 
yields better results in bug detection compared to 
conventional methods (Hammouri et al., 2018).  
Several prior studies have focused on Python bug 
detection : (Zhang et al., 2014) developed a 
system called AI designed to address concurrent 
bugs. Although the system successfully detected 
many bugs, it failed to identify specific synthetic 
bugs requiring interleaving access to shared 
variables by two threads, highlighting limitations in 
its approach. (Elmishali et al., 2019) introduced 
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DeBGUer, a tool employing the Learn, Diagnose, 
and Plan (LDP) paradigm to detect and isolate 
bugs. The error prediction model trained with 
machine learning effectively guided testing efforts, 
demonstrating significant potential in enhancing 
bug detection efficiency. (Alam Zaidi et al., 2020) 
applied convolutional neural networks (CNN) to 
recommend bug fixes. Experimental results 
showed that the ELMo-CNN-based approach 
achieved the highest accuracy in bug triage 
problems, highlighting the effectiveness of deep 
learning techniques in addressing bug-related 
challenges in large software projects. (Allamanis 
et al., 2021) developed the BUGLAB model, which 
uses self-supervised learning to detect and fix 
bugs. This model improved detection accuracy by 
up to 30% compared to baseline methods and 
discovered 19 previously undetected bugs in 
open-source software. (Deng et al., 2024) 
conducted a testing campaign to identify logic 
bugs in spatial database engines using a 
geometry-aware generator. Their research 
successfully detected 34 unique bugs, 30 of which 
were confirmed, and 18 were fixed, demonstrating 
the effectiveness of their technique in uncovering 
bugs overlooked by previous methodologies. 
Lastly. (Shukla et al., 2021) designed an 
automated approach to detect, localize, and fix 
bugs in P4 programs using machine learning 
guided by fuzzing. Their approach successfully 
detected runtime bugs without modifying P4 
programs, indicating great potential in automating 
the debugging process. 

This study aims to develop an automated 
bug detection system in Python code using 
syntactic analysis and machine learning with the 
Random Forest model. This method extracts 
syntactic features from source code using 
Abstract Syntax Tree (AST) without requiring 
direct execution, making it safer and more efficient 
than traditional execution-based or rule-based 
methods. The dataset is collected directly, 
consisting of 100 bugged files and 100 non-
bugged files, manually classified. The model is 
trained using features such as the number of 
functions, classes, variables, conditions, and 
exception handling blocks to identify patterns 
potentially containing bugs. The novelty of this 
research lies in the combination of AST-based 
feature extraction and Random Forest Classifier 
for bug detection, an approach that has been 
rarely explored. The results of this study are 
expected to enhance debugging efficiency and 
contribute to the automation of code review as well 
as Continuous Integration and Continuous 
Deployment (CI/CD) pipelines. 
 

2. Research Methods 
2.1. Data Collection 

In this study, data was collected directly to 
ensure the diversity and quality of the dataset. The 
dataset consists of 100 bugged files and 100 non-
bugged files, organized into two separate 
directories: "bugged" for code containing bugs and 
"non_bugged" for bug-free code. Each Python file 
was analyzed using Abstract Syntax Tree (AST) to 
extract structural features, such as the number of 
functions, classes, variables, conditions, and 
exception handling blocks. The extracted data 
was then converted into feature vectors and 
labeled as 1 for bugged code and 0 for non-
bugged code. This approach ensures that the 
dataset reflects variations in code structure and 
complexity levels, making it suitable for training a 
machine learning model to detect bugs 
automatically. 
 
2.2. Feature Extraction Using AST 

In this study, feature extraction was 
performed using Abstract Syntax Tree (AST) to 
analyze the syntactic structure of Python code. 
AST allows for breaking down the source code into 
its fundamental components, such as functions, 
classes, variables, conditions, and exception 
handling. Several structural features were 
extracted from each Python file, including the 
number of functions (FunctionDef), classes 
(ClassDef), declared variables (Assign), total lines 
of code, branching and looping structures (If, 
While, For), as well as exception handling 
mechanisms (Try). This approach enables the 
machine learning model to recognize structural 
patterns in the code and differentiate between 
bugged and non-bugged files. If a SyntaxError is 
encountered during AST parsing, the file is 
skipped to ensure the training process remains 
uninterrupted. (Nguyen & Hoang, 2024). 
 
2.3. Formulas Used 

The following formulas were applied to 
extract structural features from the Python code 
using Abstract Syntax Tree (AST): 
 
Number of functions: 𝐹 = ∑ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐷𝑒𝑓 
Number of classes: C=∑ ClassDef 
Number of declared variables: V=∑ Assign 
Total lines of code: L= total lines 
Number of conditions (if, for, while): 
Cond=∑(If, For, While) 
Number of exception handling blocks: E=∑Try 
 
Each code is represented as a feature vector. 
 

𝑋 = [𝐹, 𝐶, 𝑉, 𝐿, 𝐶𝑜𝑛𝑑, 𝐸]  (1) 
 
2.4. Training the Model with Random Forest 

After extracting features from the dataset, 
the Random Forest Classifier model is used to 
detect bugs in Python code (P & Kambli, 2020). 
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The dataset, consisting of 100 bugged files and 
100 non-bugged files, is split into training data 
(70%) and testing data (30%) using a train-test 
split. The model is trained with 100 decision trees 
(estimators) to classify whether a given code 
contains a bug or not. During the training process, 
the model learns patterns from the structural 
features of the code extracted using AST. After 
training, the model is evaluated using accuracy, a 
confusion matrix, and a classification report. 
Additionally, the accuracy curve for both training 
and testing is plotted to analyze model 
performance as the number of estimators 
increases. 
The formulas used in this study are as follows: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑝𝑖 𝑙𝑜𝑔 2𝑝𝑖

𝑛

𝑖=1

  (2) 

Where 𝑝𝑖 is the probability of a sample belonging 
to a certain category. 
The model is trained with nnn estimators (number 
of trees). 
 

𝑚𝑜𝑑𝑒𝑙 = 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠

= 100, 𝑟𝑎𝑛𝑑𝑜𝑚𝑠𝑡𝑎𝑡𝑒 = 42)   (3) 
 
2.5. Model Evaluation 

After training, the Random Forest 
Classifier model is evaluated to measure its 
performance in detecting bugs in Python code. 
The evaluation is conducted using accuracy, a 
classification report, and a confusion matrix. 
Accuracy is calculated by comparing the model’s 
predictions with the actual labels in the test data. 
Additionally, the classification report provides 
metrics such as precision, recall, and F1-score to 
assess how well the model classifies bugged and 
non-bugged code. The confusion matrix is 
visualized as a heatmap to show the number of 
correct and incorrect predictions (Meenakshi & 
Singh, 2019). Furthermore, training and testing 
accuracy curves are plotted based on the number 
of estimators to analyze potential overfitting or 
underfitting, ensuring that the model can 
generalize well to new data (Mostafa et al., 2025). 
 
Formulas Used: 

Accuracy =  
Number of Correct Predictions

Total Number of Samples

=  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  (4) 

 
2.6. Prediction and Implementation 

After the Random Forest Classifier model 
has been trained and evaluated, the next step is 
to utilize it for automatic bug detection in Python 
code. The model predicts whether a Python file 
contains bugs by extracting structural features 
using the Abstract Syntax Tree (AST) and 
comparing them with patterns learned during 

training. The prediction process can be applied to 
individual files or an entire directory containing 
categorized bugged and non-bugged code. The 
prediction results are displayed alongside the 
actual labels for further validation. 
 
The trained model is employed to detect bugs in 
new code by transforming the code into a feature 
vector 𝑿 and predicting with: 
 

𝒚 = 𝒎𝒐𝒅𝒆𝒍. 𝒑𝒓𝒆𝒅𝒊𝒄𝒕(𝑿)  (5) 
 
3. Results and Discussion 
3.1. Bug Detection Implementation 

After the Random Forest Classifier model 
has been trained and evaluated, the bug detection 
implementation is conducted by testing the model 
on Python code files categorized as bugged and 
non-bugged. This process involves reading each 
file in the test directory, extracting features using 
the Abstract Syntax Tree (AST), and predicting 
whether the file contains bugs. 

The prediction results are compared with 
the actual labels to assess the model's 
effectiveness. Based on the evaluation, the model 
demonstrates a high accuracy in detecting bugs, 
as indicated by the classification report and 
confusion matrix. The model performs well in 
classifying bugged and non-bugged code, with 
balanced precision and recall, ensuring that it is 
not only accurate in detecting bugs but also 
minimizes misclassification of correct code as 
bugged (false positives). 

Furthermore, the analysis of training and 
testing accuracy curves indicates that the model 
does not suffer from overfitting, as its performance 
on test data remains stable with an increasing 
number of estimators in the Random Forest. This 
suggests that the model has good generalization 
capability for new data. 
 
3.2. Proposed Model Performance 

The Random Forest Classifier developed 
in this study demonstrates a satisfactory 
performance in detecting bugs in Python code, 
achieving an accuracy rate of 86.67%. This 
accuracy reflects the model's capability to 
correctly classify source code into bugged and 
non-bugged categories. Beyond accuracy, the 
classification report provides additional insights 
into the balance between precision, recall, and F1-
score for each class. For the non-bugged class 
(label 0), the model achieves a precision of 0.86, 
recall of 0.86, and an F1-score of 0.86 from a total 
of 29 samples. Meanwhile, for the bugged class 
(label 1), the model records a precision of 0.87, 
recall of 0.87, and an F1-score of 0.87 from a total 
of 31 samples. The high precision values for both 
classes indicate that the model effectively 
minimizes false positives when identifying bugged 
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code. Additionally, the high recall values suggest 
that the model successfully detects most of the 
actual bugged code. With balanced F1-scores, the 
model demonstrates a low error rate and stable 
performance in bug detection. 

 
Source : Research process 

Figure 1. Example of Bug Detection Results 
 

Figure 1 illustrates the bug detection 
results, demonstrating that the model successfully 
identified most files containing bugs correctly. 
From the list of results, nearly all files named 
"filebug ().py" were detected as "Bug Detected," 
aligning with their actual labels as "bugged." 
However, there was one misclassification case, 
"filebug (45).py," where the model predicted "No 
Bug Detected," despite the file actually containing 
a bug. This indicates a potential false negative in 
the classification. Overall, the model performed 
well in detecting bugs in Python code, with only a 
few misclassification errors. 
 

 
Source : Research process 

Figure 2. Confusion Matrix 

Figure 2 illustrates the model's 
performance in detecting both bugged and non-
bugged code. The model correctly classified 27 
bugged samples as bugged (True Positive) and 25 
non-bugged samples as non-bugged (True 
Negative). However, there were 4 False Positive 
cases, where non-bugged code was incorrectly 
classified as bugged, and 4 False Negative cases, 
where bugged code was misclassified as non-
bugged. These results indicate that the model 
maintains a good balance in distinguishing 
between bugged and non-bugged code, with a 
relatively low error rate. 
 
3.1. Evaluation of Detection Results 

The evaluation of bug detection results 
indicates that the model performs well in 
classifying code as bugged or non-bugged. Most 
files containing bugs were correctly identified, 
aligning with their actual labels. However, some 
misclassifications occurred, such as with filebug 
(45).py, where the model incorrectly classified a 
bugged file as non-bugged. This error suggests 
the presence of false negatives, which could lead 
to undetected bugs in the code. Despite this, with 
an accuracy of 86.67%, the model still 
demonstrates reliable performance in detecting 
bugs in Python code. Further evaluation can be 
conducted by increasing the training dataset size 
or optimizing the model’s parameters to reduce 
misclassification errors. 
 

 
Source : Research process 

Figure 3. Training and Testing Accuracy Curve 
 

Figure 3 illustrates the accuracy curve of 
the Random Forest model based on the number 
of estimators. The blue line represents training 
accuracy, which remains stable at approximately 
94%, while the orange line represents testing 
accuracy, which hovers around 86.67%. The 
graph indicates that the training accuracy is 
significantly higher than the testing accuracy, 
suggesting potential overfitting. This means the 
model has learned patterns too specific to the 
training data, limiting its ability to generalize to new 
data. 
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Additionally, as the number of estimators 
increases, testing accuracy tends to plateau, 
implying that adding more estimators does not 
necessarily improve the model's performance. 
The achieved testing accuracy of 86.67% 
demonstrates that the model is fairly reliable in 
detecting bugs in Python code. However, there is 
still room for improvement to reduce the gap 
between training and testing accuracy. 
Furthermore, after reaching approximately 75 
estimators, testing accuracy stagnates, indicating 
that increasing the number of estimators beyond a 
certain point does not provide substantial 
performance gains. This highlights the importance 
of selecting an optimal number of estimators to 
prevent excessive model complexity without 
significant improvement in testing performance. 
 
4. Conclusion 

This study successfully developed an 
automatic bug detection model for Python code 
using Abstract Syntax Tree (AST) and Random 
Forest Classifier. The dataset consisted of 100 
bugged files and 100 non-bugged files, with the 
model trained using structural code features such 
as the number of functions, classes, variables, 
conditions, and exception handling. 
Evaluation results indicate that the model 
achieved an accuracy of 86.67%, with balanced 
precision and recall for both classes, 
demonstrating reliable bug detection 
performance. The confusion matrix revealed four 
False Positive cases and four False Negative 
cases, indicating that while the model is fairly 
accurate, some classification errors remain. 

Analysis of the accuracy curve suggests 
potential overfitting, as the training accuracy 
reached 94%, while the testing accuracy remained 
at 86.67%. This indicates that the model is overly 
fitted to the training data, limiting its performance 
on new data. Furthermore, increasing the number 
of estimators beyond 75 did not yield a significant 
improvement in accuracy, highlighting the 
importance of optimal parameter selection. 

Overall, this study demonstrates that the 
AST-based feature extraction approach combined 
with the Random Forest classifier can enhance 
the efficiency of bug detection in Python code. 
However, to further improve accuracy, model 
optimization and dataset expansion are necessary 
to reduce classification errors and enhance the 
model’s generalization capability. 
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