
JURNAL INFORMATIKA, Vol. 11 No. 2 October 2025, Page 75-80
ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

DOI: https://doi.org/10.31294/inf.v12i2.25340

 75

Copyright © 2025 Bahtiar Imran, Selamet Riadi, Emi Suryadi, M. Zulpahmi, Zaeniah, Erfan Wahyudi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

SemetonBug: A Machine Learning Model for Automatic
Bug Detection in Python Code Based on Syntactic Analysis

Bahtiar Imran1, Selamet Riadi2*, Emi Suryadi3, M. Zulpahmi4, Zaeniah5, Erfan Wahyudi6

1,2,3Rekayasa Sistem Komputer, Fakultas Teknologi Informasi dan Komunikasi, Universitas Teknologi

Mataram, Mataram, Indonesia
4Teknik Informatika, Fakultas Teknologi Informasi dan Komunikasi, Universitas Teknologi Mataram,

Mataram, Indonesia
5Sistem Informasi, Fakultas Teknologi Informasi dan Komunikasi, Universitas Teknologi Mataram,

Mataram, Indonesia
6Manajemen Keamanan dan Keselamatan Publik, Institut Pemerintahan Dalam Negeri, Praya,

Indonesia

Correspondence e-mail: didiriadijumantoro@gmail.com

Submission:
22-02-2025

Revision:
19-04-2025

Acceptance:
19-06-2025

Available Online:
01-10-2025

Abstract

Bug detection in Python programming is a crucial aspect of software development. This study develops
an automated bug detection system using feature extraction based on Abstract Syntax Tree (AST) and
a Random Forest Classifier model. The dataset consists of 100 manually classified bugged files and
100 non-bugged files. The model is trained using structural code features such as the number of
functions, classes, variables, conditions, and exception handling. Evaluation results indicate an
accuracy of 86.67%, with balanced precision and recall across both classes. Confusion matrix analysis
identifies the presence of false positives and false negatives, albeit in relatively low numbers. The
accuracy curve suggests a potential overfitting issue, as training accuracy is higher than testing
accuracy. This study demonstrates that the combination of AST-based feature extraction and Random
Forest can be an effective approach for automated bug detection, with potential improvements through
model optimization and a larger dataset.

Keywords: Abstract Syntax Tree, Random Forest, Machine learning.

1. Introduction

Bug detection in Python programming is a
crucial aspect of developing high-quality software
(Adarsh et al., 2023; Albattah & Alzahrani, 2024;
Hammouri et al., 2018; Immaculate et al., 2022;
Verma, 2024). Bugs can arise from various
sources, including syntax errors, logic errors, or
even improper use of Python’s dynamic features.
Research has shown that Python programming
has unique characteristics that influence the
patterns of bugs that emerge. For instance, an
empirical study conducted by Hu and Zhang found
that numerous previously undetected bugs exist in
commonly used Python libraries such as Pillow,
highlighting the need for more effective bug
detection tools (Hu & Zhang, 2022). Additionally,
Chen et al. revealed that dynamic code changes
during bug fixing significantly impact software
quality, making it essential to understand how
these features interact when addressing bugs
(Chen et al., 2017).

In this context, the development of tools
and techniques for bug detection becomes highly

critical. For example, BugsInPy is a database
designed to support research and development of
testing and debugging tools specifically for Python
programs, reducing barriers to research in this
field (Widyasari et al., 2020).
Moreover, a bug prediction model developed by
Khan et al. demonstrated that hyperparameter
optimization in machine learning algorithms can
improve the accuracy of software bug prediction
(Khan et al., 2020). Furthermore, research by
Hammouri et al. indicated that applying machine
learning algorithms such as Naïve Bayes,
Decision Trees, and Artificial Neural Networks
yields better results in bug detection compared to
conventional methods (Hammouri et al., 2018).
Several prior studies have focused on Python bug
detection : (Zhang et al., 2014) developed a
system called AI designed to address concurrent
bugs. Although the system successfully detected
many bugs, it failed to identify specific synthetic
bugs requiring interleaving access to shared
variables by two threads, highlighting limitations in
its approach. (Elmishali et al., 2019) introduced

https://doi.org/10.31294/inf.v12i2.25340
http://creativecommons.org/licenses/by-sa/4.0/

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025
ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

http://ejournal.bsi.ac.id/ejurnal/index.php/ji 76

DeBGUer, a tool employing the Learn, Diagnose,
and Plan (LDP) paradigm to detect and isolate
bugs. The error prediction model trained with
machine learning effectively guided testing efforts,
demonstrating significant potential in enhancing
bug detection efficiency. (Alam Zaidi et al., 2020)
applied convolutional neural networks (CNN) to
recommend bug fixes. Experimental results
showed that the ELMo-CNN-based approach
achieved the highest accuracy in bug triage
problems, highlighting the effectiveness of deep
learning techniques in addressing bug-related
challenges in large software projects. (Allamanis
et al., 2021) developed the BUGLAB model, which
uses self-supervised learning to detect and fix
bugs. This model improved detection accuracy by
up to 30% compared to baseline methods and
discovered 19 previously undetected bugs in
open-source software. (Deng et al., 2024)
conducted a testing campaign to identify logic
bugs in spatial database engines using a
geometry-aware generator. Their research
successfully detected 34 unique bugs, 30 of which
were confirmed, and 18 were fixed, demonstrating
the effectiveness of their technique in uncovering
bugs overlooked by previous methodologies.
Lastly. (Shukla et al., 2021) designed an
automated approach to detect, localize, and fix
bugs in P4 programs using machine learning
guided by fuzzing. Their approach successfully
detected runtime bugs without modifying P4
programs, indicating great potential in automating
the debugging process.

This study aims to develop an automated
bug detection system in Python code using
syntactic analysis and machine learning with the
Random Forest model. This method extracts
syntactic features from source code using
Abstract Syntax Tree (AST) without requiring
direct execution, making it safer and more efficient
than traditional execution-based or rule-based
methods. The dataset is collected directly,
consisting of 100 bugged files and 100 non-
bugged files, manually classified. The model is
trained using features such as the number of
functions, classes, variables, conditions, and
exception handling blocks to identify patterns
potentially containing bugs. The novelty of this
research lies in the combination of AST-based
feature extraction and Random Forest Classifier
for bug detection, an approach that has been
rarely explored. The results of this study are
expected to enhance debugging efficiency and
contribute to the automation of code review as well
as Continuous Integration and Continuous
Deployment (CI/CD) pipelines.

2. Research Methods
2.1. Data Collection

In this study, data was collected directly to
ensure the diversity and quality of the dataset. The
dataset consists of 100 bugged files and 100 non-
bugged files, organized into two separate
directories: "bugged" for code containing bugs and
"non_bugged" for bug-free code. Each Python file
was analyzed using Abstract Syntax Tree (AST) to
extract structural features, such as the number of
functions, classes, variables, conditions, and
exception handling blocks. The extracted data
was then converted into feature vectors and
labeled as 1 for bugged code and 0 for non-
bugged code. This approach ensures that the
dataset reflects variations in code structure and
complexity levels, making it suitable for training a
machine learning model to detect bugs
automatically.

2.2. Feature Extraction Using AST

In this study, feature extraction was
performed using Abstract Syntax Tree (AST) to
analyze the syntactic structure of Python code.
AST allows for breaking down the source code into
its fundamental components, such as functions,
classes, variables, conditions, and exception
handling. Several structural features were
extracted from each Python file, including the
number of functions (FunctionDef), classes
(ClassDef), declared variables (Assign), total lines
of code, branching and looping structures (If,
While, For), as well as exception handling
mechanisms (Try). This approach enables the
machine learning model to recognize structural
patterns in the code and differentiate between
bugged and non-bugged files. If a SyntaxError is
encountered during AST parsing, the file is
skipped to ensure the training process remains
uninterrupted. (Nguyen & Hoang, 2024).

2.3. Formulas Used

The following formulas were applied to
extract structural features from the Python code
using Abstract Syntax Tree (AST):

Number of functions: 𝐹 = ∑ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐷𝑒𝑓
Number of classes: C=∑ ClassDef
Number of declared variables: V=∑ Assign
Total lines of code: L= total lines
Number of conditions (if, for, while):
Cond=∑(If, For, While)
Number of exception handling blocks: E=∑Try

Each code is represented as a feature vector.

𝑋 = [𝐹, 𝐶, 𝑉, 𝐿, 𝐶𝑜𝑛𝑑, 𝐸] (1)

2.4. Training the Model with Random Forest

After extracting features from the dataset,
the Random Forest Classifier model is used to
detect bugs in Python code (P & Kambli, 2020).

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025
ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

http://ejournal.bsi.ac.id/ejurnal/index.php/ji 77

The dataset, consisting of 100 bugged files and
100 non-bugged files, is split into training data
(70%) and testing data (30%) using a train-test
split. The model is trained with 100 decision trees
(estimators) to classify whether a given code
contains a bug or not. During the training process,
the model learns patterns from the structural
features of the code extracted using AST. After
training, the model is evaluated using accuracy, a
confusion matrix, and a classification report.
Additionally, the accuracy curve for both training
and testing is plotted to analyze model
performance as the number of estimators
increases.
The formulas used in this study are as follows:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖 𝑙𝑜𝑔 2𝑝𝑖

𝑛

𝑖=1

 (2)

Where 𝑝𝑖 is the probability of a sample belonging
to a certain category.
The model is trained with nnn estimators (number
of trees).

𝑚𝑜𝑑𝑒𝑙 = 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠

= 100, 𝑟𝑎𝑛𝑑𝑜𝑚𝑠𝑡𝑎𝑡𝑒 = 42) (3)

2.5. Model Evaluation

After training, the Random Forest
Classifier model is evaluated to measure its
performance in detecting bugs in Python code.
The evaluation is conducted using accuracy, a
classification report, and a confusion matrix.
Accuracy is calculated by comparing the model’s
predictions with the actual labels in the test data.
Additionally, the classification report provides
metrics such as precision, recall, and F1-score to
assess how well the model classifies bugged and
non-bugged code. The confusion matrix is
visualized as a heatmap to show the number of
correct and incorrect predictions (Meenakshi &
Singh, 2019). Furthermore, training and testing
accuracy curves are plotted based on the number
of estimators to analyze potential overfitting or
underfitting, ensuring that the model can
generalize well to new data (Mostafa et al., 2025).

Formulas Used:

Accuracy =
Number of Correct Predictions

Total Number of Samples

=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4)

2.6. Prediction and Implementation

After the Random Forest Classifier model
has been trained and evaluated, the next step is
to utilize it for automatic bug detection in Python
code. The model predicts whether a Python file
contains bugs by extracting structural features
using the Abstract Syntax Tree (AST) and
comparing them with patterns learned during

training. The prediction process can be applied to
individual files or an entire directory containing
categorized bugged and non-bugged code. The
prediction results are displayed alongside the
actual labels for further validation.

The trained model is employed to detect bugs in
new code by transforming the code into a feature
vector 𝑿 and predicting with:

𝒚 = 𝒎𝒐𝒅𝒆𝒍. 𝒑𝒓𝒆𝒅𝒊𝒄𝒕(𝑿) (5)

3. Results and Discussion
3.1. Bug Detection Implementation

After the Random Forest Classifier model
has been trained and evaluated, the bug detection
implementation is conducted by testing the model
on Python code files categorized as bugged and
non-bugged. This process involves reading each
file in the test directory, extracting features using
the Abstract Syntax Tree (AST), and predicting
whether the file contains bugs.

The prediction results are compared with
the actual labels to assess the model's
effectiveness. Based on the evaluation, the model
demonstrates a high accuracy in detecting bugs,
as indicated by the classification report and
confusion matrix. The model performs well in
classifying bugged and non-bugged code, with
balanced precision and recall, ensuring that it is
not only accurate in detecting bugs but also
minimizes misclassification of correct code as
bugged (false positives).

Furthermore, the analysis of training and
testing accuracy curves indicates that the model
does not suffer from overfitting, as its performance
on test data remains stable with an increasing
number of estimators in the Random Forest. This
suggests that the model has good generalization
capability for new data.

3.2. Proposed Model Performance

The Random Forest Classifier developed
in this study demonstrates a satisfactory
performance in detecting bugs in Python code,
achieving an accuracy rate of 86.67%. This
accuracy reflects the model's capability to
correctly classify source code into bugged and
non-bugged categories. Beyond accuracy, the
classification report provides additional insights
into the balance between precision, recall, and F1-
score for each class. For the non-bugged class
(label 0), the model achieves a precision of 0.86,
recall of 0.86, and an F1-score of 0.86 from a total
of 29 samples. Meanwhile, for the bugged class
(label 1), the model records a precision of 0.87,
recall of 0.87, and an F1-score of 0.87 from a total
of 31 samples. The high precision values for both
classes indicate that the model effectively
minimizes false positives when identifying bugged

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025
ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

http://ejournal.bsi.ac.id/ejurnal/index.php/ji 78

code. Additionally, the high recall values suggest
that the model successfully detects most of the
actual bugged code. With balanced F1-scores, the
model demonstrates a low error rate and stable
performance in bug detection.

Source : Research process

Figure 1. Example of Bug Detection Results

Figure 1 illustrates the bug detection
results, demonstrating that the model successfully
identified most files containing bugs correctly.
From the list of results, nearly all files named
"filebug ().py" were detected as "Bug Detected,"
aligning with their actual labels as "bugged."
However, there was one misclassification case,
"filebug (45).py," where the model predicted "No
Bug Detected," despite the file actually containing
a bug. This indicates a potential false negative in
the classification. Overall, the model performed
well in detecting bugs in Python code, with only a
few misclassification errors.

Source : Research process

Figure 2. Confusion Matrix

Figure 2 illustrates the model's
performance in detecting both bugged and non-
bugged code. The model correctly classified 27
bugged samples as bugged (True Positive) and 25
non-bugged samples as non-bugged (True
Negative). However, there were 4 False Positive
cases, where non-bugged code was incorrectly
classified as bugged, and 4 False Negative cases,
where bugged code was misclassified as non-
bugged. These results indicate that the model
maintains a good balance in distinguishing
between bugged and non-bugged code, with a
relatively low error rate.

3.1. Evaluation of Detection Results

The evaluation of bug detection results
indicates that the model performs well in
classifying code as bugged or non-bugged. Most
files containing bugs were correctly identified,
aligning with their actual labels. However, some
misclassifications occurred, such as with filebug
(45).py, where the model incorrectly classified a
bugged file as non-bugged. This error suggests
the presence of false negatives, which could lead
to undetected bugs in the code. Despite this, with
an accuracy of 86.67%, the model still
demonstrates reliable performance in detecting
bugs in Python code. Further evaluation can be
conducted by increasing the training dataset size
or optimizing the model’s parameters to reduce
misclassification errors.

Source : Research process

Figure 3. Training and Testing Accuracy Curve

Figure 3 illustrates the accuracy curve of
the Random Forest model based on the number
of estimators. The blue line represents training
accuracy, which remains stable at approximately
94%, while the orange line represents testing
accuracy, which hovers around 86.67%. The
graph indicates that the training accuracy is
significantly higher than the testing accuracy,
suggesting potential overfitting. This means the
model has learned patterns too specific to the
training data, limiting its ability to generalize to new
data.

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025
ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

http://ejournal.bsi.ac.id/ejurnal/index.php/ji 79

Additionally, as the number of estimators
increases, testing accuracy tends to plateau,
implying that adding more estimators does not
necessarily improve the model's performance.
The achieved testing accuracy of 86.67%
demonstrates that the model is fairly reliable in
detecting bugs in Python code. However, there is
still room for improvement to reduce the gap
between training and testing accuracy.
Furthermore, after reaching approximately 75
estimators, testing accuracy stagnates, indicating
that increasing the number of estimators beyond a
certain point does not provide substantial
performance gains. This highlights the importance
of selecting an optimal number of estimators to
prevent excessive model complexity without
significant improvement in testing performance.

4. Conclusion

This study successfully developed an
automatic bug detection model for Python code
using Abstract Syntax Tree (AST) and Random
Forest Classifier. The dataset consisted of 100
bugged files and 100 non-bugged files, with the
model trained using structural code features such
as the number of functions, classes, variables,
conditions, and exception handling.
Evaluation results indicate that the model
achieved an accuracy of 86.67%, with balanced
precision and recall for both classes,
demonstrating reliable bug detection
performance. The confusion matrix revealed four
False Positive cases and four False Negative
cases, indicating that while the model is fairly
accurate, some classification errors remain.

Analysis of the accuracy curve suggests
potential overfitting, as the training accuracy
reached 94%, while the testing accuracy remained
at 86.67%. This indicates that the model is overly
fitted to the training data, limiting its performance
on new data. Furthermore, increasing the number
of estimators beyond 75 did not yield a significant
improvement in accuracy, highlighting the
importance of optimal parameter selection.

Overall, this study demonstrates that the
AST-based feature extraction approach combined
with the Random Forest classifier can enhance
the efficiency of bug detection in Python code.
However, to further improve accuracy, model
optimization and dataset expansion are necessary
to reduce classification errors and enhance the
model’s generalization capability.

Reference
Adarsh, T. K., Sinchana, R., C, K. P., & Uday, R.

(2023). Software Bug Prediction Using
Machine Learning Approach. International
Journal for Research in Applied Science &
Engineering Technology (IJRASET), 11(Xii),
1401–1405.

Alam Zaidi, S. F., Awan, F. M., Lee, M., Woo, H.,
& Lee, C.-G. (2020). Applying Convolutional
Neural Networks With Different Word
Representation Techniques to Recommend
Bug Fixers. Ieee Access.
https://doi.org/10.1109/access.2020.304006
5

Albattah, W., & Alzahrani, M. (2024). Software
Defect Prediction based on Machine
Learning and Deep Learning. AI, 116–122.
https://doi.org/10.1109/ICICT54344.2022.98
50643

Allamanis, M., Jackson-Flux, H., & Brockschmidt,
M. (2021). Self-Supervised Bug Detection
and Repair.
https://doi.org/10.48550/arxiv.2105.12787

Chen, Z., Ma, W., Wei, L., Chen, L., Li, Y., & Xu,
B. (2017). A Study on the Changes of
Dynamic Feature Code When Fixing Bugs:
Towards the Benefits and Costs of Python
Dynamic Features. Science China
Information Sciences.
https://doi.org/10.1007/s11432-017-9153-3

Deng, W., Mang, Q., Zhang, C., & Rigger, M.
(2024). Finding Logic Bugs in Spatial
Database Engines Via <i>Affine Equivalent
Inputs</I>. Proceedings of the Acm on
Management of Data.
https://doi.org/10.1145/3698810

Elmishali, A., Stern, R., & Kalech, M. (2019).
DeBGUer: A Tool for Bug Prediction and
Diagnosis. Proceedings of the Aaai
Conference on Artificial Intelligence.
https://doi.org/10.1609/aaai.v33i01.3301944
6

Hammouri, A., Hammad, M., Alnabhan, M. M.,
Alnabhan, M., & Alsarayrah, F. (2018).
Software Bug Prediction using Machine
Learning Approach Network Routing View
project E-learning View project Software
Bug Prediction using Machine Learning
Approach. Article in International Journal of
Advanced Computer Science and
Applications, 9(2), 78–83.
www.ijacsa.thesai.org

Hu, M., & Zhang, Y. (2022). An Empirical Study
of the Python/C API on Evolution and Bug
Patterns. Journal of Software Evolution and
Process. https://doi.org/10.1002/smr.2507

Immaculate, S. D., Begam, M. F., & Floramary<
M. (2022). Software Bug Prediction Using
Supervised Machine Learning Algorithms.
IEEE Access, 849–869.
https://doi.org/10.4018/978-1-6684-6291-
1.ch044

Khan, F., Kanwal, S., Alamri, S., & Mumtaz, B.
(2020). Hyper-Parameter Optimization of
Classifiers, Using an Artificial Immune
Network and Its Application to Software Bug
Prediction. Ieee Access.

JURNAL INFORMATIKA, Vol. 12 No. 2 October 2025
ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

http://ejournal.bsi.ac.id/ejurnal/index.php/ji 80

https://doi.org/10.1109/access.2020.296836
2

Meenakshi, & Singh, D. S. (2019). Software Bug
Prediction Using Supervised Machine
Learning Algorithms. International Research
Journal of Engineering and Technology
(IRJET), 4968–4971.
https://doi.org/10.1109/IconDSC.2019.8816
965

Mostafa, S., Cynthia, S. T., Roy, B., & Mondal, D.
(2025). Feature transformation for improved
software bug detection and commit
classification. Journal of Systems and
Software, 219(July 2024), 112205.
https://doi.org/10.1016/j.jss.2024.112205

Nguyen, A.-T. P., & Hoang, V.-D. (2024).
Development of Code Evaluation System
based on Abstract Syntax Tree. Journal of
Technical Education Science, 19(1), 15–24.
https://doi.org/10.54644/jte.2024.1514

P, R., & Kambli, P. (2020). Analysis on Detecting
a Bug in a Software using Machine
Learning. International Journal of Recent
Technology and Engineering (IJRTE), 9(2),

1195–1199.
https://doi.org/10.35940/ijrte.b4119.079220

Shukla, A., Hudemann, K. N., Vági, Z., Hügerich,
L., Smaragdakis, G., Hecker, A., Schmid,
S., & Feldmann, A. (2021). Fix With P6:
Verifying Programmable Switches at
Runtime.
https://doi.org/10.1109/infocom42981.2021.
9488772

Verma, K. (2024). Bug Prediction using Machine
Learning. International Journal of Computer
Science & Communication, 15(1), 15–23.

Widyasari, R., Sim, S. Q., Lok, C., Qi, H., Phan,
J., Tay, Q., Tan, C., Wee, F., Tan, J. E.,
Yieh, Y., P. Goh, B. K., Thung, F., Kang, H.
J., Hoang, T., Lo, D., & Ouh, E. L. (2020).
BugsInPy: A Database of Existing Bugs in
Python Programs to Enable Controlled
Testing and Debugging Studies.
https://doi.org/10.1145/3368089.3417943

Zhang, M., Wu, Y., Lu, S., Qi, S., Ren, J., &
Zheng, W. (2014). AI: A Lightweight System
for Tolerating Concurrency Bugs.
https://doi.org/10.1145/2635868.2635885

