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Abstract 

Hate speech refers to sentences or words aimed at degrading or insulting individuals, groups, or 
communities based on factors such as ethnicity, religion, race, or intergroup differences. Hate speech 
has harmful impacts, including increasing social tension, triggering conflicts, and inciting violence. 
Therefore, automatic detection of hate speech is crucial to maintaining societal harmony and preventing 
conflict escalation. This study employs Natural Language Processing (NLP) techniques using FastText 
feature extraction and the SVM algorithm for text classification. The evaluation is conducted using the 
F1 Score as the performance metric. The data is split using the 10-fold Cross Validation method, and 
experiments are carried out with four SVM kernels: RBF, Linear, Polynomial, and Sigmoid. The research 
findings demonstrate that the combination of FastText and SVM methods is effective in hate speech 
classification. By adopting FastText parameters from previous studies and involving four SVM kernels, 
this study achieves a satisfactory average F1 Score. The Polynomial kernel shows the best performance 
with an F1 Score of 0.813, followed by the Linear kernel with 0.809, the RBF kernel with 0.808, and the 
Sigmoid kernel with 0.805, indicating that the differences in F1 Score results are not significant. These 
findings underscore the importance of selecting the appropriate kernel in SVM to improve the accuracy 
of hate speech detection. 
 
Keywords: Hate Speech, FastText Feature Extraction & Support Vector Machine (SVM) 
 
1. Introduction 

Hate speech is an important issue that is 
attracting the attention of many parties, especially 
in today's digital era. Cases of hate speech are 
frequently encountered on social media, 
particularly on platforms like Twitter. The use of 
social media often triggers the emergence of 
opinions that qualify as hate speech and 
defamation. Hate speech consists of sentences or 
words that demean or insult individuals, groups, or 
specific communities, containing elements of 
ethnicity, religion, race, and intergroup differences 
(Antariksa et al., 2019). 

Such actions can have damaging negative 
impacts at both the individual and social levels. 
Individuals who fall victim to hate speech often 
experience psychological trauma, stress, and 
depression, which can diminish their quality of life. 
At the social level, hate speech has the potential 
to incite intergroup conflicts, increase social 
polarization, and reinforce negative stereotypes, 
all of which contribute to societal division and 
threaten social cohesion. In extreme cases, hate 

speech can provoke physical violence and 
criminal acts, disrupting public safety and order. 

Natural Language Processing (NLP) 
studies the interaction between human natural 
language and machines to understand the 
meaning and analyze the expressions conveyed 
through words or text. In language processing, 
NLP employs techniques that represent words in 
vector form, known as word embedding, such as 
Word2Vec, GloVe, and FastText, which are 
implemented using machine learning models 
(Kedia & Rasu, 2020). One of the machine 
learning models that can be used for classification 
is the Support Vector Machine (SVM), which is 
utilized for text classification, object recognition, 
and text recognition (Adhari et al., 2021). 

Furthermore, a study related to NLP 
conducted by Amalia et al. (2020) compared TF-
IDF and FastText in text classification using the F1 
Score evaluation metric. In the initial experiment, 
the FastText model used default parameters and 
yielded suboptimal performance. Consequently, 
the researchers repeated the experiment to find 
the best hyperparameters to optimize the 
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evaluation metric. The hyperparameters used 
were a learning rate of 1, epoch of 10, and NGram 
of 2. From this comparison, the FastText model 
showed an improvement in the F1 Score from 0.74 
to 0.97, with a processing time of 0.0459109999 
seconds, which is faster than the TF-IDF model's 
time of 1.478 seconds and an F1 Score of 0.97. 
Therefore, the parameters of the FastText model 
significantly affect the F1 Score evaluation results, 
enhancing the model's performance.  

A comparative study combining several 
other methods was conducted by Baskoro et al. 
(2021) on Software Requirements Specification 
(SRS) data using two datasets, PROMISE and 
SecReq. The comparison involved methods such 
as SVM, SVM-FastText, Convolutional Neural 
Network (CNN), and CNN-FastText. The results 
showed that SVM-FastText achieved an F1 Score 
of 0.90 on both datasets, while CNN-FastText 
obtained an F1 Score of 0.84 on PROMISE and 
0.74 on SecReq. This discrepancy is due to the 
fact that CNN-FastText incorporates hidden 
layers, necessitating suitable parameters to 
effectively combine the two methods. 

Furthermore, research by Boucherit & 
Abainia (2022) on offensive language data 
employed several methods, including SVM, 
Multinomial NB, Gaussian NB, CNN, BiLSTM, and 
FastText. In both binary and multi-label 
classification, SVM and Multinomial NB 
outperformed the other methods, while FastText 
provided the highest results for feature extraction 
compared to other methods. Related to 
classification with SVM in text classification, 
Adhari et al. (2021) designed a website to detect 
Twitter posts that contain threats using Support 
Vector Machine (SVM). The evaluation used four 
parameters: accuracy, precision, recall, and F1 
Score. The highest evaluation result from six tests 
showed the best accuracy value of 73%. 

Thus, the research has yet to explore the 
combination of FastText and SVM methods for 
classification using secondary data from the study 
by Ibrohim & Budi (2019), titled “Multi-label Hate 
Speech and Abusive Language Detection in 
Indonesian Twitter.” This study detects hate 
speech and abusive language with multi-label 
classification, where the dataset is categorized 
into multiple classes. The classes or labels include 
12 categories based on the type of speech: Hate 
Speech, Abusive Language, Individual Hate 
Speech, Group Hate Speech, Religious Hate 
Speech, Gender Hate Speech, Racial Hate 
Speech, Physical Hate Speech, Other Hate 
Speech, Weak Hate Speech, Moderate Hate 
Speech, and Strong Hate Speech. The dataset 
consists of 5,561 tweets classified as hate speech, 
5,043 tweets as abusive, and 7,604 tweets as non-
hate speech. Among these categories, there are 
classes with similar meanings, such as religious 

hate speech, gender hate speech, racial hate 
speech, and physical hate speech. 

This study conducts experiments and 
analyzes the results of hate speech classification 
using data from the research by Ibrohim & Budi 
(2019). FastText is employed for feature 
extraction using the parameters outlined in the 
study by Amalia et al. (2020). Subsequently, the 
classification model is developed using the SVM 
algorithm, with performance evaluated using the 
F1 Score metric. 
 
2. Research Methods 

In this study, FastText will be used for 
Natural Language Processing (NLP) and Support 
Vector Machine (SVM) for classification. Figure 1 
below illustrates the research flow to be 
undertaken.  

 
 

Image 1. Research flow 

The data used in this study is sourced from 
Ibrohim & Budi (2019), as detailed in the 
Introduction section. This dataset is open source 
and can be obtained from the GitHub site. 
2.1  Data PreProcessing 

At this stage, several data cleaning steps 
will be performed on the dataset. The following are 
the preprocessing steps: 
a. Insert Column ID 

This step utilizes the Pandas library 
(McKinney, 2010) to add an ID column to the 
dataset. This addition helps in identifying, 
tracking, and processing the data more 
efficiently and accurately.  

b. Lower Case 
This step uses the Regular Expression library 
(Python Software Foundation, 2023) to 
convert the text in the tweet column to 
lowercase. This transformation helps avoid 
discrepancies in characters that should be 
identical but differ due to capitalization 
differences. 

c. Remove Attribute Tweet 
This step employs the Regular Expression 
(re) library (Python Software Foundation, 
2023) to remove specific attributes from the 
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tweets, such as URLs, retweet symbols, 
usernames, emojis, and repeated characters.  

d. Non Alphanumeric 
This step uses the Regular Expression (re) 
library (Python Software Foundation, 2023) to 
remove all alphanumeric characters and any 
unwanted characters, such as punctuation, 
symbols, or other special characters. 

e. Spell Checker 
For spell checking, two slang dictionaries are 
used, as shown in Figure 2 below. These 
dictionaries are employed to correct spelling 
in the text to align with the standard 
Indonesian language as defined by the KBBI 
(Kamus Besar Bahasa Indonesia). The 
"alay_dict 2" dictionary contains 
predominantly regional language words, so 
corrections are informed by native speakers 
of the respective ethnic groups. This 
dictionary is imported using the Pandas 
library (McKinney, 2010).  
 

 
Image 2. Alay Dictionary 

f. Stemming 
The stemming step involves converting words 
to their base forms using the Sastrawi library 
(Cahyono, 2023). For instance, the word 
"mencegah" is reduced to the base form 
"cegah," "membantu" to "bantu," and 
"berenang" to "renang.". 

g. Stopword 
In the stopword removal step, common words 
that do not provide significant information, such 
as “ini,” “itu,” and “adalah,” are removed, as 
shown in Figure 3. This process uses a 
stopword list in Indonesian, which is imported 
using the Pandas library (McKinney, 2010). 
 

 
Image 3. Indonesian Stopwords 

h. Word Visualization 
In the word visualization step, the `collections` 
module is used to count the frequency of 
occurrences of elements within the data. 
Subsequently, the `WordCloud` module 
generates a word cloud image based on the 
frequency data. 

i. Remove Empty Data 
In this section, empty data, data consisting only 
of spaces, and data containing only a single 
word are removed. 
 

2.2  Cross Validation 
Cross Validation addresses this issue by 

dividing the data into several subsets called folds. 
In each iteration, one fold is used as the test set, 
while the remaining folds are used as the training 
set. This ensures that each fold is used as a test 
set at various points during the cross-validation 
process (Peryanto et al., 2020). 

This step involves splitting the data using 
cross-validation with 10 folds, employing the 
KFold module from the Sklearn library (Pedregosa 
et al., 2011). In the first iteration, the first fold is 
used as the test set, and the remaining 9 folds are 
used as the training set. The process is illustrated 
in Figure 4 below for the 10-fold cross-validation. 

 
Sumber: Verdikha (2018) 
 

Image 4. Cross Validation KFold 10 

The parameters used in the cross-
validation process are: 
a. n_splits : This parameter determines the 

number of folds to be created, set to 10. 
b. train_index & test_index : These are used to 

obtain the indices of each fold. 
c. Split () : This method iterates over each fold of 

the Kfold object, dividing the data into training 
and testing sets. 

d. Enumerate() : This function is used to obtain 
the indeks of each fold. 

e. Train set & Test set : These are used to store 
the training and testing data, respectively. 
 

2.3  Feature Extraction FastText 
FastText is a word embedding method 

developed by Facebook AI Research in 2016. It 
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represents words as vectors and extends the 
Word2Vec model by handling out-of-vocabulary 
words through sequences of n-grams. 
Additionally, FastText uses the Bag of Words 
(BoW) approach for word processing (Nurdin et 
al., 2020). 

FastText features a neural network 
architecture comprising three components. The 
input layer consists of word vectors derived from 
the Bag of Words (BoW) model and n-grams. The 
hidden layer processes these vectors to compute 
a set of word embeddings formed from the words. 
Finally, the output layer averages the vectors from 
the hidden layer to produce a linear classification 
result (Herwanto et al., 2019). 

The process of forming vector 
representations for feature extraction using 
FastText involves the following steps. The tools 
used include Python with the FastText library 
(Joulin et al., 2016). The parameters utilized, as 
explained in the background from the study by 
Amalia et al. (2020), are as follows: 
a. Learning Rate : This parameter determines the 

rate of learning, set to 0.1. 
b. Epoch: This parameter indicates the number of 

iterations used to train the data, with a value of 
10. 

c. Word n-gram: This parameter specifies the 
number of n-grams used in feature formation 
from the words in the text, set to 2. 

d. Model: This parameter is used to store the 
FastText model. 
 

2.4  Support Vector Machine (SVM) Classification 
Support Vector Machine (SVM) is a model 

developed by Vapnik and his team for pattern 
classification. It employs a technique to manage 
error boundaries by minimizing the distance 
between the training data and the hyperplane. 
This approach contrasts with traditional methods 
that focus on reducing observational testing 
errors. The training process for SVM involves 
solving a quadratic programming problem with 
linear constraints, which differs from training other 
networks that involve non-linear optimization and 
carry the risk of getting trapped in local minima. In 
SVM, the solution depends only on a subset of the 
training data known as support vectors (Singh et 
al., 2020). 

To classify the model with SVM, the 
following parameters are required, using the 
`sklearn` library (Pedregosa et al., 2011): 
a. Kernel: The kernel in SVM transforms the 

feature space to convert non-linear data into 
linear data. There are four types of SVM 
kernels: linear, radial basis function (RBF), 
polynomial, and sigmoid. In this study, four 
scenarios will be tested using these different 
kernels. 

b. C: This parameter controls the trade-off on the 
margin, with a value set to 1.0. 

c. Gamma: This parameter controls the shape of 
the hyperplane, with the value set to "scale”. 

2.5  F1 Score 
The F1 Score is derived from the confusion 

matrix, which provides information about the 
results of classification predictions. It includes four 
components: true positive (TP), false positive 
(FP), true negative (TN), and false negative (FN). 
This is illustrated in Figure 5 below. 

 
Source: Nugroho (2019) 
 

Image 5. Confusion Matrix 

a. True Positif (TP): Represent the number of 
positive cases correctly classified as positive.  

b. False Positif (FP): Represents the number of 
negative cases incorrectly classified as 
positive. 

c. True Negatif (TN): Represents the number of 
negative cases correctly classified as negative. 

d. False Negatif (FN): Represents the number of 
positive cases incorrectly classified as 
negative. 

The F1 Score combines precision and 
recall, and can be calculated using the following 
formula. 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
           (1) 

 Where precision is the ratio of true 
positive predictions to the total number of positive 
predictions, and recall is the ratio of true positive 
predictions to the total number of actual positive 
cases. Therefore, the F1 Score emphasizes the 
balance between false positives and false 
negatives, aiming to provide a more balanced 
measure of classification performance. 

This step involves measuring the 
alignment between the model's classification 
results and the actual classes using a confusion 
matrix and the F1 Score, utilizing the sklearn 
library (Pedregosa et al., 2011). The parameters 
used for each fold and the average across all folds 
are as follows: 
a. y_test :  This represents the actual values of 

the target or labels in the classification. 
b. y_pred: This represents the predicted values 

for each sample of data from each SVM kernel. 
c. np.mean : This is a function used to calculate 

the average F1 Score across all folds. 
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3. Results and Discussion 
3.1 Data Cleaning 

Secondary data that has been described 
in the Research Methods section in the form of 
Comma Separated Values (CSV) is imported into 
python. In this data there is 1 Tweet column and 
12 class columns. From this dataset there are still 
built-in attributes from Twitter such as username, 
retweet, URL and emoji so that it requires a 
cleaning stage before the experiment is carried 
out. The columns that will be used in this research 
are the Tweet column containing text and the HS 
column containing numbers. 

From the HS column there are 2 classes, 
namely 1 is the HS class and 0 is the Non HS class 
with a total number of rows of 13169. The number 
of class 0 columns is 7608 and the number of 
class 1 is 5561, Figure 6 is a graphical display of 
the HS column. 

 
Image 6. Data Count Chart 
 

Then the data enters the preprocessing 
stage with each computation time result as in 
Table 1 as follows. 

 
Table 1. Preprocessing Time 

Process Time 

Insert Clumn ID 0,005 Seconds 
Lower Case 0,008 Seconds 
Remove Attribute 0,49 Seconds   
Non Alphanumeric 3,98 Seconds 
Spell Checker 0,11 Seconds 
Stemming 17 Minute 
Stopword 10,43 Seconds 
Visualisasi Kata 1,96 Seconds 
Remove Data Kosong 0,03 Seconds 

 
Based on the results of preprocessing the 

computation time of each stage is obtained the 
longest time at the stemming stage, then the 
results of visualization still have noise words or 
words that are not included in the HS word. From 
this stage the initial data with the amount of data 
13169 becomes 13112 final data which is then 
stored in CSV form. 

 
3.2 Data Division 

With the data division used, namely Cross 
Validation, which is carried out before the data 

enters the formation of the extraction feature 
model by separating the preprocessing data to be 
used, namely the Tweet Clean column and the HS 
column. The following are some of the results of 
the division of train data and test data from fold 1 
and 10 to find out the division of data according to 
the process. 

From the results of fold 1 there is train 
data with a total of 11800 samples with indices 
from 1312 to 13111 and test data as many as 1312 
samples with indices from 0 to 1311, the time 
required is less than 0.00 seconds. 

While from fold 10 there is train data with 
a total of 11801 samples with indices from 0 to 
13111 and test data as many as 1311 samples 
with indices from 11801 to 13111, the time 
required is the same as in fold 1. 

 
3.3 Feature Extraction 

The   feature   extraction   process   in 
FastText uses data that has been separated    
from the cross validation process which is then 
inputted in the form of a text file that can be read 
by the FastText model. In the formation of data 
vectors separated into 2, namely train data and 
test data in the "x" data column which is the 
"Tweet_Clean" data column, this is done to ensure 
that the features generated from the FastText 
model come from the appropriate data, namely 
features from training data used to train the model 
and features from test data used for testing. 

Based on the data train features formed 
for 76.7247 seconds (1.27874 minutes) with a 
vector of 100 dimensions and the range of vector 
values obtained is at a value of -0.065 to 0.067, 
from the value of the vector range can determine 
the distribution of vector values in the data. 
Meanwhile, the test data features formed for 10.65 
seconds with the same vector dimensions and has 
a range of vector values obtained at a value of -
0.007 to 0.009, from the value of the vector range 
can determine the distribution of vector values in 
the data. 

 
3.4 Classification and Evaluation 

From this stage the FastText feature 
enters the classification with the SVM algorithm 
and calculates the evaluation results to determine 
the effectiveness of the method from the 
evaluation results. Where, this process obtains the 
results of each fold for each SVM kernel, so that 
the results obtained are as listed in Table 2. 

The F1 Score results from each fold and 4 
SVM kernels show the highest results are in the 
Polynomial kernel with a value of 0.826 at fold 8, 
this indicates that the division of train and test data 
has better performance than the sigmoid kernel 
which is 0.792 at fold 4. 

When viewed from the average confusion 
matrix of each SVM kernel, the results will be 
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obtained as shown in Table 3 from each SVM 
kernel 

 
Table 2. Evaluation of Each Fold 

Fold F1 Score 

RBF Linear Polynomial Sigmoid 
Fold 1 0,796 0,800 0,810 0,795 
Fold 2 0,809 0,809 0,812 0,802 
Fold 3 0,819 0,819 0,809 0,820 
Fold 4 0,797 0,798 0,803 0,792 
Fold 5 0,804 0,805 0,806 0,803 
Fold 6 0,806 0,805 0,825 0,800 
Fold 7 0,805 0,808 0,809 0,806 
Fold 8 0,817 0,817 0,826 0,816 
Fold 9 0,810 0,808 0,800 0,806 

Fold 10 0,816 0,819 0,828 0,815 

 
Table 3. Average Confusion Matrix 

Kernel Confusion Matrix 

TP FP TN FN 

RBF 438 122 676 75 

Linear 443 117 673 78 

Polynomial 484 76 627 124 

Sigmoid 440 120 672 79 

 
Based on TP, TN, FP, and FN from each 

kernel and the calculation of the average F1 Score 
from each fold using np.mean in the program 
function, the results are shown in Table 4 as 
follows. 

 
Table 4. F1 Score Results of Each Kernel 

Average F1 Score 

Kernel Results 

RBF 0,808 

Linear 0,809 

Polynomial 0,813 

Sigmoid 0,805 

 
Based on the F1 Score evaluation results 

for various kernels, the RBF kernel has an F1 
Score value of 0.808. This kernel shows good 
performance in classification, although the F1 
Score value is slightly lower than the Polynomial 
and Linear kernels. Linear kernel has an F1 Score 
value of 0.809. This kernel provides almost 
equivalent performance to the Polynomial kernel, 
showing a good ability to classify data. The 
Polynomial kernel has the highest F1 Score value 
of 0.813. It gives the best performance among all 
the kernels evaluated, indicating that the model 
with the Polynomial kernel is more suitable for the 
dataset used in this experiment. The Sigmoid 

kernel has a slightly lower F1 Score value of 
0.805. It performs well, but is slightly less optimal 
than the Polynomial and Linear kernels. 

 
4. Conclusion 

From the analysis, it can be concluded 
that the combination of FastText and SVM 
methods on this secondary data obtained good 
results by considering the use of kernels, where 
the Polynomial kernel showed the best 
performance in classifying the data, followed by 
the Linear kernel. While the RBF and Sigmoid 
kernels also show good performance, but their F1 
Score is slightly lower than the previous two 
kernels. This indicates that the F1 Score results do 
not provide a significant difference in results. 
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