
JURNAL INFORMATIKA, Vol.11 No.2 October 2024, Page 73-79
ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

DOI: https://doi.org/10.31294/inf.v11i2.21107

 73
Copyright © 2024 Nabila Nuraini, Naufal Azmi Verdikha, Asslia Johar Latipah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Analysis of FastText with Support Vector Machine for
Hate Speech Classification on Twitter Social Media

Nabila Nuraini1*, Naufal Azmi Verdikha2, Asslia Johar Latipah3

1,2,3 Informatics Engineering, Faculty of Science and Technology, Muhammadiyah University East

Kalimantan
Jl. Ir. H. Juanda No.15, Sidodadi, Kec. Samarinda Ulu, Samarinda, East Kalimantan

Correspondence e-mail: 1911102441033@umkt.ac.id

Submission:
18-01-2024

Revision:
01-06-2024

Acceptance:
29-07-2024

Available Online:
23-08-2024

Abstract

Hate speech refers to sentences or words aimed at degrading or insulting individuals, groups, or
communities based on factors such as ethnicity, religion, race, or intergroup differences. Hate speech
has harmful impacts, including increasing social tension, triggering conflicts, and inciting violence.
Therefore, automatic detection of hate speech is crucial to maintaining societal harmony and preventing
conflict escalation. This study employs Natural Language Processing (NLP) techniques using FastText
feature extraction and the SVM algorithm for text classification. The evaluation is conducted using the
F1 Score as the performance metric. The data is split using the 10-fold Cross Validation method, and
experiments are carried out with four SVM kernels: RBF, Linear, Polynomial, and Sigmoid. The research
findings demonstrate that the combination of FastText and SVM methods is effective in hate speech
classification. By adopting FastText parameters from previous studies and involving four SVM kernels,
this study achieves a satisfactory average F1 Score. The Polynomial kernel shows the best performance
with an F1 Score of 0.813, followed by the Linear kernel with 0.809, the RBF kernel with 0.808, and the
Sigmoid kernel with 0.805, indicating that the differences in F1 Score results are not significant. These
findings underscore the importance of selecting the appropriate kernel in SVM to improve the accuracy
of hate speech detection.

Keywords: Hate Speech, FastText Feature Extraction & Support Vector Machine (SVM)

1. Introduction

Hate speech is an important issue that is
attracting the attention of many parties, especially
in today's digital era. Cases of hate speech are
frequently encountered on social media,
particularly on platforms like Twitter. The use of
social media often triggers the emergence of
opinions that qualify as hate speech and
defamation. Hate speech consists of sentences or
words that demean or insult individuals, groups, or
specific communities, containing elements of
ethnicity, religion, race, and intergroup differences
(Antariksa et al., 2019).

Such actions can have damaging negative
impacts at both the individual and social levels.
Individuals who fall victim to hate speech often
experience psychological trauma, stress, and
depression, which can diminish their quality of life.
At the social level, hate speech has the potential
to incite intergroup conflicts, increase social
polarization, and reinforce negative stereotypes,
all of which contribute to societal division and
threaten social cohesion. In extreme cases, hate

speech can provoke physical violence and
criminal acts, disrupting public safety and order.

Natural Language Processing (NLP)
studies the interaction between human natural
language and machines to understand the
meaning and analyze the expressions conveyed
through words or text. In language processing,
NLP employs techniques that represent words in
vector form, known as word embedding, such as
Word2Vec, GloVe, and FastText, which are
implemented using machine learning models
(Kedia & Rasu, 2020). One of the machine
learning models that can be used for classification
is the Support Vector Machine (SVM), which is
utilized for text classification, object recognition,
and text recognition (Adhari et al., 2021).

Furthermore, a study related to NLP
conducted by Amalia et al. (2020) compared TF-
IDF and FastText in text classification using the F1
Score evaluation metric. In the initial experiment,
the FastText model used default parameters and
yielded suboptimal performance. Consequently,
the researchers repeated the experiment to find
the best hyperparameters to optimize the

http://creativecommons.org/licenses/by-sa/4.0/
mailto:1911102441033@umkt.ac.id

JURNAL INFORMATIKA, Vol. 11 No.2 October 2024
ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

http://ejournal.bsi.ac.id/ejurnal/index.php/ji 74

evaluation metric. The hyperparameters used
were a learning rate of 1, epoch of 10, and NGram
of 2. From this comparison, the FastText model
showed an improvement in the F1 Score from 0.74
to 0.97, with a processing time of 0.0459109999
seconds, which is faster than the TF-IDF model's
time of 1.478 seconds and an F1 Score of 0.97.
Therefore, the parameters of the FastText model
significantly affect the F1 Score evaluation results,
enhancing the model's performance.

A comparative study combining several
other methods was conducted by Baskoro et al.
(2021) on Software Requirements Specification
(SRS) data using two datasets, PROMISE and
SecReq. The comparison involved methods such
as SVM, SVM-FastText, Convolutional Neural
Network (CNN), and CNN-FastText. The results
showed that SVM-FastText achieved an F1 Score
of 0.90 on both datasets, while CNN-FastText
obtained an F1 Score of 0.84 on PROMISE and
0.74 on SecReq. This discrepancy is due to the
fact that CNN-FastText incorporates hidden
layers, necessitating suitable parameters to
effectively combine the two methods.

Furthermore, research by Boucherit &
Abainia (2022) on offensive language data
employed several methods, including SVM,
Multinomial NB, Gaussian NB, CNN, BiLSTM, and
FastText. In both binary and multi-label
classification, SVM and Multinomial NB
outperformed the other methods, while FastText
provided the highest results for feature extraction
compared to other methods. Related to
classification with SVM in text classification,
Adhari et al. (2021) designed a website to detect
Twitter posts that contain threats using Support
Vector Machine (SVM). The evaluation used four
parameters: accuracy, precision, recall, and F1
Score. The highest evaluation result from six tests
showed the best accuracy value of 73%.

Thus, the research has yet to explore the
combination of FastText and SVM methods for
classification using secondary data from the study
by Ibrohim & Budi (2019), titled “Multi-label Hate
Speech and Abusive Language Detection in
Indonesian Twitter.” This study detects hate
speech and abusive language with multi-label
classification, where the dataset is categorized
into multiple classes. The classes or labels include
12 categories based on the type of speech: Hate
Speech, Abusive Language, Individual Hate
Speech, Group Hate Speech, Religious Hate
Speech, Gender Hate Speech, Racial Hate
Speech, Physical Hate Speech, Other Hate
Speech, Weak Hate Speech, Moderate Hate
Speech, and Strong Hate Speech. The dataset
consists of 5,561 tweets classified as hate speech,
5,043 tweets as abusive, and 7,604 tweets as non-
hate speech. Among these categories, there are
classes with similar meanings, such as religious

hate speech, gender hate speech, racial hate
speech, and physical hate speech.

This study conducts experiments and
analyzes the results of hate speech classification
using data from the research by Ibrohim & Budi
(2019). FastText is employed for feature
extraction using the parameters outlined in the
study by Amalia et al. (2020). Subsequently, the
classification model is developed using the SVM
algorithm, with performance evaluated using the
F1 Score metric.

2. Research Methods

In this study, FastText will be used for
Natural Language Processing (NLP) and Support
Vector Machine (SVM) for classification. Figure 1
below illustrates the research flow to be
undertaken.

Image 1. Research flow

The data used in this study is sourced from
Ibrohim & Budi (2019), as detailed in the
Introduction section. This dataset is open source
and can be obtained from the GitHub site.
2.1 Data PreProcessing

At this stage, several data cleaning steps
will be performed on the dataset. The following are
the preprocessing steps:
a. Insert Column ID

This step utilizes the Pandas library
(McKinney, 2010) to add an ID column to the
dataset. This addition helps in identifying,
tracking, and processing the data more
efficiently and accurately.

b. Lower Case
This step uses the Regular Expression library
(Python Software Foundation, 2023) to
convert the text in the tweet column to
lowercase. This transformation helps avoid
discrepancies in characters that should be
identical but differ due to capitalization
differences.

c. Remove Attribute Tweet
This step employs the Regular Expression
(re) library (Python Software Foundation,
2023) to remove specific attributes from the

JURNAL INFORMATIKA, Vol. 11 No.2 October 2024
ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

http://ejournal.bsi.ac.id/ejurnal/index.php/ji 75

tweets, such as URLs, retweet symbols,
usernames, emojis, and repeated characters.

d. Non Alphanumeric
This step uses the Regular Expression (re)
library (Python Software Foundation, 2023) to
remove all alphanumeric characters and any
unwanted characters, such as punctuation,
symbols, or other special characters.

e. Spell Checker
For spell checking, two slang dictionaries are
used, as shown in Figure 2 below. These
dictionaries are employed to correct spelling
in the text to align with the standard
Indonesian language as defined by the KBBI
(Kamus Besar Bahasa Indonesia). The
"alay_dict 2" dictionary contains
predominantly regional language words, so
corrections are informed by native speakers
of the respective ethnic groups. This
dictionary is imported using the Pandas
library (McKinney, 2010).

Image 2. Alay Dictionary

f. Stemming
The stemming step involves converting words
to their base forms using the Sastrawi library
(Cahyono, 2023). For instance, the word
"mencegah" is reduced to the base form
"cegah," "membantu" to "bantu," and
"berenang" to "renang.".

g. Stopword
In the stopword removal step, common words
that do not provide significant information, such
as “ini,” “itu,” and “adalah,” are removed, as
shown in Figure 3. This process uses a
stopword list in Indonesian, which is imported
using the Pandas library (McKinney, 2010).

Image 3. Indonesian Stopwords

h. Word Visualization
In the word visualization step, the `collections`
module is used to count the frequency of
occurrences of elements within the data.
Subsequently, the `WordCloud` module
generates a word cloud image based on the
frequency data.

i. Remove Empty Data
In this section, empty data, data consisting only
of spaces, and data containing only a single
word are removed.

2.2 Cross Validation
Cross Validation addresses this issue by

dividing the data into several subsets called folds.
In each iteration, one fold is used as the test set,
while the remaining folds are used as the training
set. This ensures that each fold is used as a test
set at various points during the cross-validation
process (Peryanto et al., 2020).

This step involves splitting the data using
cross-validation with 10 folds, employing the
KFold module from the Sklearn library (Pedregosa
et al., 2011). In the first iteration, the first fold is
used as the test set, and the remaining 9 folds are
used as the training set. The process is illustrated
in Figure 4 below for the 10-fold cross-validation.

Sumber: Verdikha (2018)

Image 4. Cross Validation KFold 10

The parameters used in the cross-
validation process are:
a. n_splits : This parameter determines the

number of folds to be created, set to 10.
b. train_index & test_index : These are used to

obtain the indices of each fold.
c. Split () : This method iterates over each fold of

the Kfold object, dividing the data into training
and testing sets.

d. Enumerate() : This function is used to obtain
the indeks of each fold.

e. Train set & Test set : These are used to store
the training and testing data, respectively.

2.3 Feature Extraction FastText
FastText is a word embedding method

developed by Facebook AI Research in 2016. It

JURNAL INFORMATIKA, Vol. 11 No.2 October 2024
ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

http://ejournal.bsi.ac.id/ejurnal/index.php/ji 76

represents words as vectors and extends the
Word2Vec model by handling out-of-vocabulary
words through sequences of n-grams.
Additionally, FastText uses the Bag of Words
(BoW) approach for word processing (Nurdin et
al., 2020).

FastText features a neural network
architecture comprising three components. The
input layer consists of word vectors derived from
the Bag of Words (BoW) model and n-grams. The
hidden layer processes these vectors to compute
a set of word embeddings formed from the words.
Finally, the output layer averages the vectors from
the hidden layer to produce a linear classification
result (Herwanto et al., 2019).

The process of forming vector
representations for feature extraction using
FastText involves the following steps. The tools
used include Python with the FastText library
(Joulin et al., 2016). The parameters utilized, as
explained in the background from the study by
Amalia et al. (2020), are as follows:
a. Learning Rate : This parameter determines the

rate of learning, set to 0.1.
b. Epoch: This parameter indicates the number of

iterations used to train the data, with a value of
10.

c. Word n-gram: This parameter specifies the
number of n-grams used in feature formation
from the words in the text, set to 2.

d. Model: This parameter is used to store the
FastText model.

2.4 Support Vector Machine (SVM) Classification
Support Vector Machine (SVM) is a model

developed by Vapnik and his team for pattern
classification. It employs a technique to manage
error boundaries by minimizing the distance
between the training data and the hyperplane.
This approach contrasts with traditional methods
that focus on reducing observational testing
errors. The training process for SVM involves
solving a quadratic programming problem with
linear constraints, which differs from training other
networks that involve non-linear optimization and
carry the risk of getting trapped in local minima. In
SVM, the solution depends only on a subset of the
training data known as support vectors (Singh et
al., 2020).

To classify the model with SVM, the
following parameters are required, using the
`sklearn` library (Pedregosa et al., 2011):
a. Kernel: The kernel in SVM transforms the

feature space to convert non-linear data into
linear data. There are four types of SVM
kernels: linear, radial basis function (RBF),
polynomial, and sigmoid. In this study, four
scenarios will be tested using these different
kernels.

b. C: This parameter controls the trade-off on the
margin, with a value set to 1.0.

c. Gamma: This parameter controls the shape of
the hyperplane, with the value set to "scale”.

2.5 F1 Score
The F1 Score is derived from the confusion

matrix, which provides information about the
results of classification predictions. It includes four
components: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN).
This is illustrated in Figure 5 below.

Source: Nugroho (2019)

Image 5. Confusion Matrix

a. True Positif (TP): Represent the number of
positive cases correctly classified as positive.

b. False Positif (FP): Represents the number of
negative cases incorrectly classified as
positive.

c. True Negatif (TN): Represents the number of
negative cases correctly classified as negative.

d. False Negatif (FN): Represents the number of
positive cases incorrectly classified as
negative.

The F1 Score combines precision and
recall, and can be calculated using the following
formula.

 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (1)

 Where precision is the ratio of true
positive predictions to the total number of positive
predictions, and recall is the ratio of true positive
predictions to the total number of actual positive
cases. Therefore, the F1 Score emphasizes the
balance between false positives and false
negatives, aiming to provide a more balanced
measure of classification performance.

This step involves measuring the
alignment between the model's classification
results and the actual classes using a confusion
matrix and the F1 Score, utilizing the sklearn
library (Pedregosa et al., 2011). The parameters
used for each fold and the average across all folds
are as follows:
a. y_test : This represents the actual values of

the target or labels in the classification.
b. y_pred: This represents the predicted values

for each sample of data from each SVM kernel.
c. np.mean : This is a function used to calculate

the average F1 Score across all folds.

JURNAL INFORMATIKA, Vol. 11 No.2 October 2024
ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

http://ejournal.bsi.ac.id/ejurnal/index.php/ji 77

3. Results and Discussion
3.1 Data Cleaning

Secondary data that has been described
in the Research Methods section in the form of
Comma Separated Values (CSV) is imported into
python. In this data there is 1 Tweet column and
12 class columns. From this dataset there are still
built-in attributes from Twitter such as username,
retweet, URL and emoji so that it requires a
cleaning stage before the experiment is carried
out. The columns that will be used in this research
are the Tweet column containing text and the HS
column containing numbers.

From the HS column there are 2 classes,
namely 1 is the HS class and 0 is the Non HS class
with a total number of rows of 13169. The number
of class 0 columns is 7608 and the number of
class 1 is 5561, Figure 6 is a graphical display of
the HS column.

Image 6. Data Count Chart

Then the data enters the preprocessing
stage with each computation time result as in
Table 1 as follows.

Table 1. Preprocessing Time

Process Time

Insert Clumn ID 0,005 Seconds
Lower Case 0,008 Seconds
Remove Attribute 0,49 Seconds
Non Alphanumeric 3,98 Seconds
Spell Checker 0,11 Seconds
Stemming 17 Minute
Stopword 10,43 Seconds
Visualisasi Kata 1,96 Seconds
Remove Data Kosong 0,03 Seconds

Based on the results of preprocessing the

computation time of each stage is obtained the
longest time at the stemming stage, then the
results of visualization still have noise words or
words that are not included in the HS word. From
this stage the initial data with the amount of data
13169 becomes 13112 final data which is then
stored in CSV form.

3.2 Data Division

With the data division used, namely Cross
Validation, which is carried out before the data

enters the formation of the extraction feature
model by separating the preprocessing data to be
used, namely the Tweet Clean column and the HS
column. The following are some of the results of
the division of train data and test data from fold 1
and 10 to find out the division of data according to
the process.

From the results of fold 1 there is train
data with a total of 11800 samples with indices
from 1312 to 13111 and test data as many as 1312
samples with indices from 0 to 1311, the time
required is less than 0.00 seconds.

While from fold 10 there is train data with
a total of 11801 samples with indices from 0 to
13111 and test data as many as 1311 samples
with indices from 11801 to 13111, the time
required is the same as in fold 1.

3.3 Feature Extraction

The feature extraction process in
FastText uses data that has been separated
from the cross validation process which is then
inputted in the form of a text file that can be read
by the FastText model. In the formation of data
vectors separated into 2, namely train data and
test data in the "x" data column which is the
"Tweet_Clean" data column, this is done to ensure
that the features generated from the FastText
model come from the appropriate data, namely
features from training data used to train the model
and features from test data used for testing.

Based on the data train features formed
for 76.7247 seconds (1.27874 minutes) with a
vector of 100 dimensions and the range of vector
values obtained is at a value of -0.065 to 0.067,
from the value of the vector range can determine
the distribution of vector values in the data.
Meanwhile, the test data features formed for 10.65
seconds with the same vector dimensions and has
a range of vector values obtained at a value of -
0.007 to 0.009, from the value of the vector range
can determine the distribution of vector values in
the data.

3.4 Classification and Evaluation

From this stage the FastText feature
enters the classification with the SVM algorithm
and calculates the evaluation results to determine
the effectiveness of the method from the
evaluation results. Where, this process obtains the
results of each fold for each SVM kernel, so that
the results obtained are as listed in Table 2.

The F1 Score results from each fold and 4
SVM kernels show the highest results are in the
Polynomial kernel with a value of 0.826 at fold 8,
this indicates that the division of train and test data
has better performance than the sigmoid kernel
which is 0.792 at fold 4.

When viewed from the average confusion
matrix of each SVM kernel, the results will be

JURNAL INFORMATIKA, Vol. 11 No.2 October 2024
ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

http://ejournal.bsi.ac.id/ejurnal/index.php/ji 78

obtained as shown in Table 3 from each SVM
kernel

Table 2. Evaluation of Each Fold

Fold F1 Score

RBF Linear Polynomial Sigmoid
Fold 1 0,796 0,800 0,810 0,795
Fold 2 0,809 0,809 0,812 0,802
Fold 3 0,819 0,819 0,809 0,820
Fold 4 0,797 0,798 0,803 0,792
Fold 5 0,804 0,805 0,806 0,803
Fold 6 0,806 0,805 0,825 0,800
Fold 7 0,805 0,808 0,809 0,806
Fold 8 0,817 0,817 0,826 0,816
Fold 9 0,810 0,808 0,800 0,806

Fold 10 0,816 0,819 0,828 0,815

Table 3. Average Confusion Matrix

Kernel Confusion Matrix

TP FP TN FN

RBF 438 122 676 75

Linear 443 117 673 78

Polynomial 484 76 627 124

Sigmoid 440 120 672 79

Based on TP, TN, FP, and FN from each

kernel and the calculation of the average F1 Score
from each fold using np.mean in the program
function, the results are shown in Table 4 as
follows.

Table 4. F1 Score Results of Each Kernel

Average F1 Score

Kernel Results

RBF 0,808

Linear 0,809

Polynomial 0,813

Sigmoid 0,805

Based on the F1 Score evaluation results

for various kernels, the RBF kernel has an F1
Score value of 0.808. This kernel shows good
performance in classification, although the F1
Score value is slightly lower than the Polynomial
and Linear kernels. Linear kernel has an F1 Score
value of 0.809. This kernel provides almost
equivalent performance to the Polynomial kernel,
showing a good ability to classify data. The
Polynomial kernel has the highest F1 Score value
of 0.813. It gives the best performance among all
the kernels evaluated, indicating that the model
with the Polynomial kernel is more suitable for the
dataset used in this experiment. The Sigmoid

kernel has a slightly lower F1 Score value of
0.805. It performs well, but is slightly less optimal
than the Polynomial and Linear kernels.

4. Conclusion

From the analysis, it can be concluded
that the combination of FastText and SVM
methods on this secondary data obtained good
results by considering the use of kernels, where
the Polynomial kernel showed the best
performance in classifying the data, followed by
the Linear kernel. While the RBF and Sigmoid
kernels also show good performance, but their F1
Score is slightly lower than the previous two
kernels. This indicates that the F1 Score results do
not provide a significant difference in results.

Reference
Adhari, A., Nasrun, M., & ... (2021). Deteksi

Ujaran Ancaman Berbasis Website Pada
Media Sosial Twitter Menggunakan Metode
Support Vector Machine. EProceedings …,
8(2), 1920–1925.
https://openlibrarypublications.telkomuniver
sity.ac.id/index.php/engineering/article/view
File/14602/14381

Amalia, A., Sitompul, O. S., Nababan, E. B., &
Mantoro, T. (2020). An Efficient Text
Classification Using fastText for Bahasa
Indonesia Documents Classification. 2020
International Conference on Data Science,
Artificial Intelligence, and Business
Analytics, DATABIA 2020 - Proceedings,
69–75.
https://doi.org/10.1109/Databia50434.2020.
9190447

Antariksa, K., Purnomo WP, Y. S., & Ernawati, E.
(2019). Klasifikasi Ujaran Kebencian pada
Cuitan dalam Bahasa Indonesia. Jurnal
Buana Informatika, 10(2), 164.
https://doi.org/10.24002/jbi.v10i2.2451

Baskoro, F., Andrahsmara, R. A., Darnoto, B. R.
P., & Tofan, Y. A. (2021). A Systematic
Comparison of Software Requirements
Classification. IPTEK The Journal for
Technology and Science, 32(3), 184.
https://doi.org/10.12962/j20882033.v32i3.13
005

Berrar, D. (2018). Cross-validation. Encyclopedia
of Bioinformatics and Computational
Biology: ABC of Bioinformatics, 1–
3(January 2018), 542–545.
https://doi.org/10.1016/B978-0-12-809633-
8.20349-X

Cahyono, S. (2023). Sastrawi: Indonesian
Stemmer. Retrieved from
https://github.com/sastrawi/sastrawi

Chen-Wishart, M. (2014). Python Machine
Learning Third Edition. In Vascular (Issue
January 2010).

https://github.com/sastrawi/sastrawi

JURNAL INFORMATIKA, Vol. 11 No.2 October 2024
ISSN (Print) 2355-6579 | ISSN (Online) 2528-2247

http://ejournal.bsi.ac.id/ejurnal/index.php/ji 79

Ibrohim, M. O., & Budi, I. (2019). Multi-label Hate
Speech and Abusive Language Detection in
Indonesian Twitter. 46–57.
https://doi.org/10.18653/v1/w19-3506

Joulin, A., Grave, E., Bojanowski, P., Douze, M.,
Jégou, H., & Mikolov, T. (2016).
FastText.zip: Compressing text
classification models. 1–13.
http://arxiv.org/abs/1612.03651

Herwanto, G. B., Maulida Ningtyas, A., Nugraha,
K. E., & Nyoman Prayana Trisna, I. (2019).
Hate Speech and Abusive Language
Classification using fastText. 2019 2nd
International Seminar on Research of
Information Technology and Intelligent
Systems, ISRITI 2019, 69–72.
https://doi.org/10.1109/ISRITI48646.2019.9
034560

Kedia, A., & Rasu, M. (2020). Hands-On - Python
Natural Language Processing.

McKinney, W. (2010). Data Structures for
Statistical Computing in Python. In
Proceedings of the 9th Python in Science
Conference (pp. 51-56). Retrieved from
https://pandas.pydata.org/pandas-
docs/stable/

Nugroho, K.C., (2019). Confusion Matrix untuk
Evaluasi Model pada Supervised Learning.
[Online] Tersedia di
<https://ksnugroho.medium.com/confusion-
matrix-untuk-evaluasi-model-pada-
unsupervised-machine-learning-

bc4b1ae9ae3f> [Diakses 18 Juli 2023]
Nurdin, A., Anggo Seno Aji, B., Bustamin, A., &

Abidin, Z. (2020). Perbandingan Kinerja
Word Embedding Word2Vec, Glove, Dan
Fasttext Pada Klasifikasi Teks. Jurnal
Tekno Kompak, 14(2), 74.
https://doi.org/10.33365/jtk.v14i2.732

Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Barupal, D. K., &
Fiehn, O. (2011). Scikit-learn: Machine
Learning in Python. Environmental Health
Perspectives, 127(9), 2825–2830.
https://doi.org/10.1289/EHP4713

Python Software Foundation. "re — Regular
Expression Operations." Python
Documentation, version 3.11.4, 2023,
https://docs.python.org/3/library/re.html.

Singh, V., Poonia, R. C., Kumar, S., Dass, P.,
Agarwal, P., Bhatnagar, V., & Raja, L.
(2020). Prediction of COVID-19 corona
virus pandemic based on time series data
using support vector machine. Journal of
Discrete Mathematical Sciences and
Cryptography, 23(8), 1583–1597.
https://doi.org/10.1080/09720529.2020.178
4535

Verdikha, N. A., Adji, T. B., & Permanasari, A. E.
(2018). Komparasi Metode Oversampling
Untuk Klasifikasi Teks Ujaran Kebencian.
Seminar Nasional Teknologi Informasi Dan
Multimedia 2018, 85–90.

https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://docs.python.org/3/library/re.html

