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Abstract 

The use of machine learning harbours the promise of more accurate, unbiased future predictions than 
human beings on their own can ever be capable of. However, because existing data sets are always 
utilized, these calculations are extrapolations of the past and serve to reproduce prejudices embedded 
in the data. In turn, machine learning prediction result raises ethical and moral dilemmas. As mirrors of 
society, algorithms show the status quo, reinforce errors, and are subject to targeted influences – for 
good and the bad. This phenomenon makes machine learning viewed as pseudoscience. Besides the 
limitations, injustices, and oracle-like nature of these technologies, there are also questions about the 
nature of the opportunities and possibilities they offer. This article aims to discuss whether machine 
learning in biomedical research falls into pseudoscience based on Popper and Kuhn's perspective and 
four theories of truth using three study cases. The discussion result explains several conditions that 
must be fulfilled so that machine learning in biomedical does not fall into pseudoscience.  
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1. Introduction 

Machine learning is the study of 
algorithms that improve their performance at 
some tasks from experience (Mitchell, 1997). 
While traditional programming uses data and 
programs to produce an output, machine 
learning uses data and output to produce a 
program. The main goal of a learner is to 
generalize their experiences. In this context, 
generalization refers to a learning machine's 
ability to accurately execute new, previously 
unseen examples/tasks after observing a 
learning data set (Bishop, 2006). Observation of 
existing data is performed iteratively to generate 
a predictive model. 

Allowing the computer to "decide" what is 
relevant within the parameters specified 
eliminates many detrimental human biases and 
allows less space for researcher assumptions 
about an association or cause-and-effect 

relationship in the generation of a model. The 
training examples are drawn from an unknown 
probability distribution. The learner must develop 
a general model of this space that will allow it to 
make sufficiently accurate predictions in new 
cases. Because training sets are lim-ited and the 
future is uncertain, learning theory rarely 
guarantees algorithm performance. Probabilistic 
performance bounds are pretty common. The 
decomposition of bias and variance is one 
technique to measure generalization error. 

While machine learning shows less 
human bias, other sorts of biases emerge. Due 
to the model's large capacity, machine learning 
algorithms are capable of forming unrealistic 
relationships among variables. When the 
algorithm memorizes the training data due to 
these unrealistic connections, it is known as 
overfitting. Overfitting might be caused by relying 
on limited measurements and failing to validate 
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the data correctly. Furthermore, such algorithms 
are data hungry, and supplying small amounts of 
data can easily lead to model overfitting. 
Machine learning fairness, model 
generalizability, and model drifting are among 
the other drawbacks. 

In biomedical fields, image recognition, 
object detection, 3D reconstruction, and other 
medical image processing are computer vision 
problems that can be solved by machine learning 
(Park et al., 2018). Machine learning is classified 
into supervised learning (e.g. classification) and 
unsupervised learning (e.g. clustering). 
Nowadays, biomedical researchers applying 
digital image processing to extract, analyze, and 
classify Magnetic Resonance Imaging (MRI) 
results comprehensively review tumours. The 
research for brain tumor type discrimination 
using MRI features has developed parameters of 
brain tumor classification (Iqbal et al., 2018). The 
other application is diabetic retinopathy 
classification (Mansour, 2018) using a 
convolutional neural network (CNN) with 97.93% 
accuracy. The other biomedical image analysis 
assists the doctors in polyp detection (Billah & 
Waheed, 2018), which showed that CNN 
features and colour wavelets could highly 
represent endoscopic polyp images with an 
accuracy of 98.23%.  

Besides biomedical image processing, 
machine learning also has been widely used in 
biomedical signal processing or protein structure 
study (bioinformatics). Automatic heart activity 
diagnosis based on Gram Polynomials and 
Probabilistic Neural Networks was developed 
(Beritelli et al., 2018). The Deep Neural Network 
(DNN) was also implemented to detect REM, 
where the data is collected by one channel 
electrocardiography (ECG) (Wei et al., 2017). 
Bolland et al. implemented DeepBind with CNN 
to predict specificities of DNA- and RNA-binding 
proteins (Bolland et al., 2016). 

Since machine learning results highly 
depends on the data fed in into the model, some 
are likely to be inaccurate or wrong because the 
software is identifying patterns that exist only in 
that data set and not the real world. Machine 
learning and statistical techniques that shift 
through large amounts of data make uncertain in 
their results and unlikely reproducible. The 
application of an algorithm that compounds 
existing inequities in socioeconomic status, race, 
ethnic background, religion, gender, disability, or 
sexual orientation and amplifies inequities in 
health systems (Chen et al., 2008; Larrazabal et 
al., 2020; Ledford, 2019; Lyratzopoulos et al., 
2013; Madabhushi & Lee, 2016; Maya 
Dusenbery, 2018; Meghani et al., 2012; Panch, 
Mattie, & Atun, 2019; Panch, Mattie, & Celi, 
2019; Pelletier et al., 2014) can be considered as 

a pseudoscience. Instead of revealing the truth 
in the real world, the machine learning result 
confirms the social inequities in society as truth. 

Telling real science apart from 
pseudoscience is not easy. Pseudoscience may 
look good on the surface, but dig a bit deeper, 
and its fake claims are simply too good to be 
true. This article focused on the avoidance of 
machine learning application in biomedical 
research to become pseudoscience. We 
discussed the demarcation from the perspective 
of Karl Popper's view and Thomas Kuhn's. 
Although both views have different arguments 
about science, they have the essential 
contribution in differentiating science and non-
science (or pseudoscience). The discussion 
would cover the science's definition from Karl 
Popper and Thomas Kuhn and the theory of truth 
as the fundamental purpose of the research. 
Moreover, we included the three cases in 
biomedical research to support the 
understanding and enrich the discussion. 

 
2. Research Method 
2.1. Karl Popper’s Criteria of Science 

Pseudoscience is something that 
resembles a science while it is not a science 
indeed. For example, an astrologist shows that 
they can identify the biographical information of 
great people from their zodiac signs (FS, 2021). 
Most world leaders and celebrities are Leos, 
which astrologically tend to be ambitious, strong, 
and attention seekers. With adequate and 
supportive sample observations, it looks like a 
scientific theory. 

Karl Popper (1902-1994), a philosopher of 
science, felt that calling Marxist theory and 
psychoanalysis a science is not proper, in 
contrast to viewing Newton theory or Einstein 
theory of relativity as a science. He gave an 
example regarding his doubts (Popper, 1963) on 
Freud's psychoanalytic theory and its relation to 
Alfred Adler's theory. There are two men to be 
compared. The first man pushes a kid to make 
him drown. The second man gets into the water 
to save the kid who is drowning. According to 
Freud, the first person suffers from pressure 
while the second one experiences an increase in 
behavior level. Besides, according to Adler's 
theory, the first person felt inferiority that he 
wanted to have the courage to do something bad 
while the second person also proved himself 
brave enough to save the drowning child. Popper 
argued that human behaviour could not be 
interpreted with either theory. 

From Popper's formulation of science 
(Popper, 1963), the psychoanalytic theory from 
Freud and Adler is not testable because there is 
no human behaviour that can refute it. This 
psychological theory may be of considerable 
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importance, but not in a testable form yet. The 
same thing happens to astrology. Meanwhile, 
Einstein's Theory of Relativity regarding gravity 
meets the criteria of testability. Even with limited 
equipment in his time, there is a possibility to be 
refuted/tested. Nowadays, physicists still try 
deriving it to achieve more understanding, and 
that theory is still testable and accurate. Thus, 
Popper argues that science should be testable 
means it is also risky of being proven false. 
Popper (Popper, 1963) stated the definition of 
testability as follows: If observation shows that 
the predicted effect is absent, then the theory is 
easily refuted. 

Popper also points out that testability is 
not a problem how meaningful a theory is or how 
acceptable it is. However, Popper makes 
testability the dividing line between science and 
non-science (including pseudoscience), as 
illustrated in Fig.1 (a). He called the testability 
criteria a solution to the demarcation problem. 

 
2.2 Thomas Kuhn's Scientific Revolution 

Thomas Kuhn argued that science does 
not evolve gradually towards the truth that 
established theories were simply overturned and 
replaced with new ones. Science has a paradigm 
that remains constant before going through a 
paradigm shift when existing theories fail to 
explain a phenomenon and someone suggests a 
new theory. 

According to Kuhn, the progression of 
science is not linear but alternates between 
'normal' and revolutionary' (or 'exceptional') 
phases. Revolutionary periods are not simply 
periods of rapid advancement; they are 
essentially different from normal science. On the 
surface, normal science resembles the 
conventional cumulative picture of scientific 
progress. Kuhn describes normal science as 
"puzzle-solving." The puzzle-solver expects to 
have a reasonable chance of succeeding, that 
his success will be based primarily on his 
abilities, which means it involves subjectivity, 
and that the puzzle and its methods of solution 
will have a high degree of familiarity. Normal 
science can expect to accumulate a growing 
stock of puzzle solutions. On the other hand, 
scientific revolutions are not cumulative since 
they involve a revision of current scientific theory 
or practice (G. E. Jones, 1981). In a revolution, 
not all of the achievements of the previous period 
of normal science are preserved. A later period 
of science may find itself without explaining a 
phenomenon that was thought to be 
satisfactorily explained in a previous period. This 
characteristic of scientific revolutions is known 
as 'Kuhn loss.' 

Thomas Kuhn mapped the stages of the 
development of science into four main phases 

(Thomas S . Kuhn, 1990), pre-paradigm phase, 
normal science phase, crisis phase, and 
scientific revolution phase. In the pre-paradigm 
phase, as the immature science phase, scientific 
study on specific topics is carried out here 
without any defined goals or objectives in mind. 
Various types of thoughts emerge throughout 
this period, competing with and excluding one 
another. To be considered a science, a scientific 
field must attain a consensus in the shade of a 
particular paradigm. Kuhn believed that once an 
agreement was formed, scientists began to 
engage in the normal science phase. A 
commitment to establishing a shared paradigm 
that will determine the rules of the game and all 
standard benchmarks in scientific practice is a 
normal science precondition. Outside of the 
current paradigm, "normal" scientists will not 
make any discoveries. Instead, they are actively 
engaged in applying the paradigm to understand 
natural signs in greater depth better. The 
moment when knowledge can no longer be 
depended upon to solve problems as they arise 
is defined as the crisis phase or the phase of the 
emergence of extraordinary sciences. The 
scientific community began to question the 
dominant paradigm. During a crisis, one of the 
emerging ideas will be able to overcome 
scientific challenges, generalize, and promise a 
future of improved scientific study. At this time, 
extraordinary sciences are no longer 
extraordinary. This transition is the scientific 
revolution phase, a non-cumulative 
developmental experience in which a new one 
partially or entirely replaces an older paradigm. 
 

(a) 
 

 

(b) 

 
 

Fig 1. (a) Popper’s  and (b) Kuhn’s demarcation 
 
2.3. The Theories of Truth 

The correspondence theory of truth 
(David, 2018) — that whatever corresponds to 
observable reality is true. If there is an adequate 
fact to which a belief corresponds, it is true, and 
vice versa. With facts and structured 
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propositions in hand, an attempt may be made 
to explain the relation of correspondence. The 
most obvious application of this theory is in 
science: it is used in an experiment to refute a 
hypothesis because it is assumed that what is 
observed in the experiment is what is true. 

The coherence theory of truth (Walker, 
2018) — the claims are true if they follow 
logically and coherently from a set of axioms (or 
intermediate propositions). Arguments must 
make sense which they must flow logically from 
premises and intermediate propositions. The 
truth conditions of propositions, according to the 
coherence theory, are built from other 
propositions. Meanwhile, according to the 
correspondence theory, the truth conditions are 
objective features of the world rather than 
propositions.  

The consensus theory of truth (Bufacchi, 
2021; Hesse, 1978)— that what is true is what 
everyone agrees to be true. This idea is flawed 
for the following reasons: even if everyone 
reaches an agreement, all of them may be 
wrong. It can only be reached through an 
idealized discourse process even though the 
consensus is a crucial component of the 
scientific method. We are frequently unable to 
verify the correctness of a scientific study 
independently. Instead, we put our faith in 
science's system to reach a provisional 
conclusion on what is true and known about the 
world. 

The pragmatic theory of truth (Capps, 
2020)— that what is true is what is helpful to you. 
The "practical repercussions" are more 
important than theoretical ones, and it is the 
epistemology of the practitioner. The pragmatic 
theory also has some intriguing implications for 
argument evaluation. Suppose the standard 
criterion of truth is usability, and there are 
sophisticated arguments sound right but do not 
work. In that case, a logical next step is to filter 
arguments based on the trustworthiness of the 
person saying them. 

It is crucial to highlight that none of these 
truth theories is superior to the others, and they 
are all acceptable for some forms of truth but not 
for others; they are all flawed. The objective of 
explaining the four theories is to demonstrate 
that humans apply different standards of truth to 
different situations. 
 
3. Result and Discussion 

With the perspective of Karl Popper and 
Thomas Kuhn about science, we elaborated the 
risk of becoming pseudoscience in biomedical 
research in three cases and discussed how to 
keep this research to be categorized as science, 
not pseudoscience. First, we identified the 
abnormality of human health that is classifying 

abnormal heart sound to assist clinicians in 
decision making. Second, we used the task in 
the rehabilitation process assisted by the 
computer, named human computer interaction 
(HCI). Specifically, we took brain computer 
interface (BCI), which became one of the active 
studies in biomedical research. Last, a 
bioinformatics task to predict protein structure. 
 
3.1 Normal and abnormal heart sound 
classification 

Nowadays, the number of people with 
heart disease has increased globally, including 
13.6% of the population in China, 22% in 
Canada, 26.3% in Egypt, and 50 million in the 
United States. In Indonesia, 6-15% of the 
population suffers from heart disease (Jon 
Christian, 2019). In addition, countries in North 
America and Europe have more than 80% of 
heart failure patients above 65 years old. It is 
estimated that in 2030, heart failure patients in 
the United States will reach 8.5 million (Erickson, 
2003). 

The heart is a vital organ, which has 
functions to pump blood continuously throughout 
the body. It consists of the myocardium muscle, 
i.e. two atria and two ventricles. Typical heart 
sound for adults consists of two signals, the first 
sound (S1) is usually associated with cardiac 
vibrations due to the closure of mitral and tricus-
pid valves, and the second sound (S2) is a result 
of cardiac vibrations produced by the closure of 
the aortic and pulmonic valves. Other sounds 
produced by the heart due to structural and 
functional defects are called murmurs(Erickson, 
2003). Phono-cardiography is a non-invasive 
technique that records heartbeat patterns, 
including heart sounds and murmurs. The record 
is in a time-domain series of heart sound signals 
as a phonocardiogram (PCG). Heart sound 
consists of two phases: systolic and diastolic 
phases in cardiac cycles. Fig.2 shows signals for 
normal (above), and abnormal heart sounds 
signals (below). As can be seen in the top part of 
Fig.2(a), the most fundamental heart sounds are 
the first and the second (S1 and S2, 
respectively) sounds. 

On the other hand, a PCG of a type of 
abnormal heart sound signal is depicted in 
Fig.2(b). It shows the two fundamental 
components of the signals perturbed by murmur. 
In this figure, called mitral regurgitation murmur. 
Murmur, being a pseudo-periodic non-stationary 
high-frequency signal, needs both temporal and 
spatial trends to discriminate the disease from 
normal classification. It will also reduce biases 
such as ambience and motion artefacts which 
are relatively aperiodic. 
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(a) 
 

 

(b) 

 
 

Fig 2. (a) Normal and (b) Abnormal Heart 
Sound Signal [31] 

 
Identification of heart sound defects 

requires deep analysis using various signal 
processing methods: the acquisition of heart 
sound signals, noise elimination (denoising), 
feature extraction, and classification. Artificial 
intelligence has helped in several things in 
research, especially in biomedicine, especially 
for PCG signal analysis. Implementing feature 
extraction using the Ensemble method and 
integration with deep learning using 124 time-
frequency features resulted in classification for 
abnormal signal recognition by accuracy level 
0.8602, providing recommendations for the 
screening process (Puspasari et al., 2019). 
Implementing the RNN method, LSTM, GRU, B-
RNN, B-LSTM, and CNN by utilizing three layers 
of Deep learning on the Physionet Dataset 
produces 80% accuracy (Potes et al., 2016). 
Firuzbakht et al. (Firuzbakht et al., 2018) 
proposed the SVM method to detect ab-normal 
heart sound, consisting of 23 subjects with five 
normal subjects, six subjects Aortic Stenosis, 12 
Tricuspid Regurgitation, obtained an accuracy of 
96.2%. It becomes pseudoscience if 
immeasurable subjectivity is applied in its 
implementation.  

Classification of PCG heart signals, 
normal and abnormal classification develops 
ANN by the integration of various models. There 
are classification stages: filtering and 
segmentation. Based on correspondence 
theory, this research is incompatible because 
each process cannot be touched even sensed—
so many PCG samples and data sets, 
impossible for researchers to calculate 
manually. One process that follows the 
correspondence truth theory is when the heart 
sound signal retrieval directly uses a 
stethoscope instead of a database. This theory 
requires that the five senses can capture each 
stage of research. Signal processing is based on 
the heart sound signal, which is indeed the signal 
that can be seen, processed but cannot be 
touched. For example, characteristic extraction 

based on the frequency value cannot be seen 
since it computerized processing. 

Further research refers to the consistency 
of the previous studies. Pragmatic truth theory 
does not attach importance to correlation and 
correspondence truth, as long as a proposition 
has benefits. What if one method of classification 
is better than the others and provides optimal 
results? During the study, several methods of 
characteristic extraction of the heart sound 
signal in the time and frequency domain showed 
the characteristics of normal heart sound, 
including S1 and S2 components and sytolic and 
diastolic murmurs. Model algorithm of heart 
sounds abnormality identification was built by 
training machine learning with weights from 
previously trained CNN and extensive data to 
achieve higher accuracy. 

Kuhn argued that science goes through 
the scientific revolution. Similarly, various 
machine learning applications will experience a 
revolution to achieve either a high level of 
accuracy or a low level of computing. 

  
3.2 Brain signals pattern recognition (specific 
case in speech production) 

Human living activity produces unique 
signals. One of them is bioelectric signals, 
besides biomagnetic signals, bioacoustic 
signals. Bioelectric signals are generated by the 
nerve cells and muscle cells, while the cell 
membrane generates an action potential under 
certain conditions (Onaral & Cohen, 2006). This 
signal can be acquired by electrodes placed on 
the surface or invasively near the cell. One tool 
that has been developed is 
electroencephalography (EEG) to acquire 
bioelectric signals from the brain. EEG with 
surface electrodes has the lowest recorded 
potential due to the resistance of the scalp and 
skull. Despite its limitation, from the early 1300s, 
EEG signals have carried the development of 
clinical studies, experiments, and computational 
works for detection, recognition, diagnosis, and 
physical treatment of many neurological 
problems and physiological abnormalities of the 
brain. 

One field that also uses EEG contribution 
is neurocognitive study, for example, how 
humans feel fully concentrated or very painful, or 
how humans use a language to speak, as 
illustrated in Fig.3. Machine learning has been 
employed in most neurocognitive studies to 
identify the EEG pattern. This kind of study 
contains a pragmatic truth since the primary 
purpose is its usability. Additionally, the 
neurocognitive study is often used to help people 
with disabilities to perform their activities in the 
form of the Brain Computer Interface (BCI), such 
as to control a wheelchair, type a letter, or 
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Internet of Things (IoT) applications. While 
people can observe the actual use of the result, 
this study contains the correspondence truth. 

Related to the importance of determining 
whether machine learning application in the 
neurocognitive study is a science, this part 
specifically discussed the intention of EEG 
pattern recognition with machine learning to fall 
into the pseudoscience. Based on Popper, 
testability is required for science. In the 
neurocognitive study, pattern recognition must 
observe samples that represent nearly the 
variety of data. Indeed, variety in bioelectric 
signals is not always about labels of some 
specific activities. They also vary due to the 
users (cross-subject or inter-subject) and the 
personal condition (intra-subject). For example, 
several imagined speech recognitions based on 
brain signals could gain accuracy of above 90% 
in specific persons (Parhi & Tewfik, 2021; Saha 
& Fels, 2019), conducted with the same dataset 
(Nguyen et al., 2018). Even if the accuracy is 
high, the data was gathered from 15 subjects at 
one time, so there was no time-variety 
consideration. 

Additionally, there was a lack of cross-
subject analysis, and this high accuracy 
potentially tends to be overfitting. Nowadays, 
some researchers try to adopt transfer learning 
to answer the problem of cross-subject (Cooney 
et al., 2019; García-Salinas et al., 2019). 
Although, the accuracy is still low. 
 

 
Fig 3. Imagined speech recognition based on 

brain signals  
 

The other main issue for neurocognitive 
study with machine learning is how well the 
model could explain the phenomenon of brain 
activity. Although the accuracy is high enough 
after we employed massive parameter tuning, 
we have no guarantee that the model could 
achieve the same level in other uncovered 
varieties. For imagined speech recognition 
based on the brain signals, the variety could be 
due to the language used, other equipment 
besides EEG, e.g., magnetoencephalography 
(MEG, which acquired brain biomagnetic 
signals) or microelectrode (invasively placed), or 

brain condition within the subjects. While the 
phenomenon is discovered, the causality of 
different results for the new domains can be well 
observed. 

Kuhn has a different perspective about 
science demarcation from Popper, where Kuhn 
stated that the capability of puzzle-solving is the 
fundamental property of normal science. Thus, 
in Kuhn's point of view, this is not about 
testability but problem solving capability. Kuhn 
also has stated that science is revolutionary, just 
like machine learning in pattern recognition in the 
neurocognitive study that also goes through 
revolution. Most models in pattern recognition 
are often refined as many problems arise. 

In terms of speech pattern recognition, in 
the early phase, research has been conducted 
to recognize the pattern of an acoustic signal 
produced by a human. There are still problems 
to be answered, such as noise cancellation, 
language limitation. However, several models 
have been found to work well in speech 
technology, such as Google Assistant. If we 
revisit the history of speech pattern recognition, 
it started from observing how people speak and 
recognizing the information from the speech 
(meaning, dialect, gender). Then, it becomes the 
normal science while it struggles to answer the 
problem. Thus, it needs the scientific revolution. 

Pattern recognition in speech has entered 
the crisis period to find the solutions for the 
anomalies. One of the anomalies is how if a 
person cannot produce a voice when he speaks? 
For example, the one who undergoes a 
tracheostomy, a person with articulator 
abnormality, or a paralyzed one who relies only 
upon his brain activity (Bocquelet et al., 2016). 
The biomedical study has evolved that 
observation of speech has been beyond the 
acoustic signal; there are muscular signals in the 
articulator and brain signals as the source 
(Schultz et al., 2017). In this case, the neurocog-
nitive study is needed to observe the speech 
production from the source (brain activity). 

Pattern recognition of speech from 
acoustic and brain signals is different since their 
frequency range is different; brain signal in 0.1-
100Hz (Onaral & Cohen, 2006) and acoustic 
signals in 100-10,000Hz (Ryan & Frater, 2002). 
Additionally, the brain signal of speech 
production is analogous as an order before it 
was translated to muscular activity to produce 
the sound of speech. The acoustic signal is 
affected by the air produced by the lung, length 
of the vocal tract and its mass, condition of the 
vocal fold, and the activity in the mouth tract and 
nasal tract (Anusuya & Katti, 2011). In contrast, 
brain signals represent the cognitive activity 
when humans think to speak involving the 
network of millions of neurons (Chang et al., 
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2015). They are affected by human focus and 
the acquisition limitation of electrodes.  

These days, pattern recognition in brain 
signals, including in the speech production 
process, has been actively implemented to 
answer the problems related to human beings. 
The scientific revolution aimed to solve the 
puzzle and enrich the existing technology, e.g. 
speech technology (Krishna et al., 2019). 
 
3.3 Protein Structure Prediction 

Protein structure prediction (PSP) has 
long been a significant issue in biochemistry. 
Protein structures are critical for understanding 
the fundamental biology of health and disease 
and becomes the basis for other studies such as 
drug development. Computational approach is 
used as an alternative to determining protein 
structure when experimental techniques such as 
X-ray crystallography (Slabinski et al., 2007), 
NMR spectroscopy (Markwick et al., 2008), and 
increasingly, cryo-electron microscopy (Jonic & 
Vénien-Bryan, 2009) are limited. It does not 
replace the experimental one. In this case, 
computational approaches are rooted in the 
pragmatic theory of truth, which is frequently 
concerned with instrumental outcomes; it is less 
concerned with the specifics of why something 
works. 

Modern PSP systems typically consist of 
four components (AlQuraishi, 2021):(i) an input 
module that takes a single protein sequence and 
generates additional input features, such as 
multiple sequence alignment (MSA) of 
homologous proteins (Senior et al., 2019, 2020), 
Myogenic regulatory factors (MRF) (Golkov et 
al., n.d.; Liu et al., 2018), pairwise potential (D. 
T. Jones & Kandathil, 2018; Wang et al., 2017), 
Position Specific Scoring Matrix (PSSM) 
(Alquraishi, n.d.; Ingraham et al., 2018; Xu et al., 
2020), (ii) a machine learning model for 
recognize pattern, that transforms features from 
the input to spatial information that partially 
encodes the 3D structure using various 
architecture such as Convolutional (Golkov et 
al., n.d.; D. T. Jones et al., 2015), Residual Net 
(ResNet) (Senior et al., 2020; Wang et al., 2017), 
Attention mechanism (Jumper et al., 2021) (iii) 
an output that converts this spatial information 
into a  Binary contact map (D. T. Jones et al., 
2015; Wang et al., 2017), Distogram (Senior et 
al., 2020; Xu, 2018), Orientogram (Yang et al., 
2020), or preliminary 3D (AlQuraishi, 2018; 
Ingraham et al., 2018; Jumper et al., 2021) 
structure, sometimes without explicit side-chain 
atoms, and (iv) a refinement module that 
improves the preliminary structure and 
generates all atomic coordinates (Jumper et al., 
2021). PSP is undergoing a paradigm shift. 
These modules have traditionally relied on a 

combination of physics-based energy functions, 
knowledge-based statistical reasoning, and 
heuristic algorithms. However, there has been 
an infusion of machine learning, particularly 
neural networks, into every aspect of PSP in 
recent years. According to Kuhn's phase, 
traditional modules, which were the normal 
science, were unable to predict the protein 
structure with acceptable accuracy. PSP has 
been in the crisis phase since CASP1 in 1994 
because no model can provide a promising 
result. In 2018, a model (AlphaFold) using 
ResNet architecture (Senior et al., 2020) 
outperformed all other models in CASP13. It 
signalled the start of the revolution phase. In 
2020, another model (AlphaFold2) using a 
Transformer based architecture (Jumper et al., 
2021) improved the former model and achieved 
micro-angstrom accuracy. Since then, machine 
learning in PSP has become the normal science. 
Many scientists use Transformer architecture to 
predict RNA structure, which has shown 
significant success in predicting protein 
structure. Although AlphaFold2 is a game-
changer, it can only predict a single protein 
structure. Many other use cases are still being 
explored or are in the crisis phase. These are 
multi-chain prediction, disordered or 
unstructured region prediction, the effect of 
mutation prediction, multiple conformations in 
protein folding, and positions of any non-protein 
components found in experimental protein 
structure. 

Protein structure prediction is defined as 
a well-defined problem with precise inputs and 
outputs: predict the 3D structure (output) given 
AA sequences (input), with experimental 
structures serving as the ground truth (labels). 
The proposition that protein structure from 
experimental results is the ground truth for the 
computational approach follows the coherence 
theory of truth. The protein structures from 
experimental technologies conform with various 
laws, theories, and dogma in biology, physics, 
and chemistry. Thus, it is logical that the 
prediction from the computational approach 
must align with the ones from the experimental 
approach. Protein sequences, like human 
language, can be naturally represented as 
sequence of word. The protein sentence is made 
up of 20 standard AAs considered as words. 
Furthermore, like natural language, naturally 
evolved proteins are typically composed of 
reused modular elements with minor variations 
that can be rearranged and assembled 
hierarchically. The completeness of the 
information is another crucial feature shared by 
proteins and human language. A sequence of 
AAs determines its three-dimensional structure 
and function. It means that the protein's 



JURNAL INFORMATIKA, Vol.10 No.1 April 2023 
ISSN: 2355-6579 | E-ISSN: 2528-2247  

http://ejournal.bsi.ac.id/ejurnal/index.php/ji 8 

information (e.g., structure) is contained within 
its sequence, according to information theory. 
Because of these similarities in shape and 
substance, many PSP uses natural language 
processing (NLP) methods to predict protein 
structure from sequence (Ofer et al., 2021). 
Although the current PSP system using deep 
learning achieves near-angstrom accuracy for 
single protein prediction, neural networks are 
frequently referred to as "black boxes". The 
highly recursive structure makes the resulting 
parameters and functions too complex for 
practitioners to understand. Even though we 
know the amino acid sequences of billions of 
proteins and their final three-dimensional 
structure, predicting how they get it is 
challenging. 

In contrast to machine learning/deep 
learning in social science inferences, which may 
become pseudoscience if not handled carefully, 
machine learning/deep learning in PSP is less 
likely to become pseudoscience. First, most of 
the scientists in this area use verified and 
standardized data from publicly available 
databases. Second, it takes the protein structure 
from the experimental results as a ground truth. 
Third, most scientists make their model's code 
publicly available so that others can evaluate 
and verify their findings. Fourth, scientists hold a 
biannual event called Critical Assessment of 
Protein Structure Prediction to track the progress 
of PSP (CASP). The protein structure used in 
CASP is a structure that has been measured 
experimentally but has not been published so 
that the competition participants do not know the 
3D structure of the protein (4). The prediction 
result is assessed using the Global Distance 
Test (GDT) (Zemla, 2003) to assess prediction 
accuracy. GDT provides accurate measurement 
than the typical root means square deviation 
(RMSD) metric – which is sensitive to outlier 
regions created, for example, by poor modelling 
of individual loop regions in a structure that is 
otherwise reasonably accurate. The GDT score 
is calculated as the largest set of amino acid 
residues' alpha carbon atoms in the model 
structure falling within a defined distance cut-off 
of their position in the experimental structure 
after iteratively superimposing the two 
structures. These efforts ensure that the model 
is falsifiable and testable. Criteria that must be 
met so that a scientific achievement can be 
considered as science. 
 
4. Conclusion 

It is undoubtedly that machine learning 
plays a role in identifying the pattern that is hard 
to see with the naked eyes and needs years of 
experience. Moreover, it also avoids human 
errors in tasks. As machine learning has been 

used widely in the biomedical field, one mistake 
could have a huge risk for human life. For 
example, when a clinician decides the patient's 
heartbeat pattern looks normal while it is not, 
then it makes the patient's condition worse; 
when a surgeon makes a wrong diagnosis by 
reading the CT scan result, this could lead to 
wrong operation action; a mistake in analyzing 
cognitive activity in human being causes the 
wrong understanding then loses its benefits; a 
fault in human's protein structure prediction will 
bring other errors in the usage. Due to the 
cruciality, we have to make sure that machine 
learning is applied scientifically. 

Based on Popper's criteria of science, 
science has to be testable intended to falsify it, 
not to support it. Thus, the theory becomes 
corroborated. In this term, a biomedical scientist 
has to be aware of the testing procedure aimed 
for falsification. This work could refer to any 
machine learning problem, such as overfitting, 
fairness, and data drifts since machine learning 
depend on the data. For example, we should 
feed the machine learning model with high 
variability data related to the task. By publishing 
the model and dataset built, we invite other 
researchers to falsify it. Besides, the prior 
knowledge of experts would help to build the 
explainable model. Additionally, as time goes by, 
we cannot ignore that the data trends could shift, 
causing the model are no longer applicable. 
Adaptivity of the model is the other important 
thing. 

While Popper gets rid of subjectivity in 
science demarcation by requiring testability, 
Kuhn argues that science still needs subjectivity. 
In contrast, science is revolutionary; then this 
involves a consensus to accept it. As we 
mentioned about fairness and expert 
involvement, it means biomedical research 
matures the part of the scientific revolution to 
answer the "puzzles," and biomedical expert's 
involvement fulfils the subjectivity aspect in 
science acceptance. The aim of publications is 
also to open the chance of more scientific 
revolutions. 

We can conclude that applying machine 
learning in biomedical research is not as easy as 
crunching the data. Many things need 
consideration due to enhance the quality of 
human life. We cannot ignore the role of 
consensus while machine learning in biomedical 
science goes through the scientific revolution to 
answer biomedical questions. Thus, we also 
have to be firmed that biomedical research is 
testable and aware of any machine learning 
challenge. 
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