Prediksi Lama Masa Tunggu Alumni USM dalam Mendapatkan Pekerjaan dengan Algoritma KNN
Sari
A search for information on university alumni was carried out in order to determine how long it would take to get a job. In the stage of progress in the quality of a university, alumni play an important role, because the quality of learning at a university can be said to be quite good if the alumni are quickly absorbed into the world of work. The search (tracer study) was obtained through a questionnaire distributed by the USM Career and Graduate Class (UCAC) to alumni. This information consists of data from alumni in 2019-2020 and is then used to obtain examples of the length of time to employment needed for USM graduates to get a job after graduating from undergraduate studies. The KNN algorithm was used in this research, this is because the KNN method is able to predict the time to employment for alumni compared to other methods. Competencies that have an impact on the time to employment for alumni to get a job can be obtained through the results of this research analysis, such as skills in using computers, time management, analytical skills, and scientific discipline. The results of implementing the KNN algorithm by trying K values from 1-100 have the highest accuracy reaching 98.84%.
Teks Lengkap:
pdf: 104-112Referensi
Adnyana, I. M. B. (2020). Implementasi Naïve Bayes Untuk Memprediksi Waktu Tunggu AlumniDalam Memperoleh Pekerjaan. Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 131–134. https://prosiding.seminar-id.com/index.php/sainteks
Akbar, R., & Mukhtar, M. (2020). Perancangan E-Tracer Study berbasis Sistem Cerdas. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 9(1), 8–12. https://doi.org/10.32736/sisfokom.v9i1.631
Albina, A. C., & Sumagaysay, L. P. (2020). Employability tracer study of Information Technology Education graduates from a state university in the Philippines. Social Sciences and Humanities Open, 2(1), 100055. https://doi.org/10.1016/j.ssaho.2020.100055
Alfarisi, W., Fauziyah, & Gunawan Sudarsono, B. (2022). Rancang Bangun Aplikasi Tracer Study Berbasis Web Studi Kasus Pada Fakultas Ilmu Komputer University Bung Karno. Jurnal Ilmiah Sistem Informasi, 2(1), 47–58. http://simasi.lppmbinabangsa.id/index.php/home
Aulia, T. D., Siagian, Y., & Putri, P. (2023). Penerapan Algoritma Naive Bayes Untuk Prediksi Waktu Tunggu Alumni Mendapatkan Pekerjaan Pada Lembaga Pusat Layanan Karir Stmik Royal. J-Com (Journal of Computer), 3(2), 85–92.
Bianto, M. A., Kusrini, K., & Sudarmawan, S. (2020). Perancangan Sistem Klasifikasi Penyakit Jantung Mengunakan Naïve Bayes. Creative Information Technology Journal, 6(1), 75. https://doi.org/10.24076/citec.2019v6i1.231
Feng, K., González, A., & Casero, M. (2021). A kNN algorithm for locating and quantifying stiffness loss in a bridge from the forced vibration due to a truck crossing at low speed. Mechanical Systems and Signal Processing, 154, 107599. https://doi.org/10.1016/j.ymssp.2020.107599
Kiri, T. P., & Atti, A. (2021). Pengaruh Ipk Dan Masa Studi Terhadap Waktu Tunggu Mendapatkan Pekerjaan. Jurnal Diferensial, 3(1). https://doi.org/10.35508/jd.v3i1.3998
Maricar, M. A., & Dian Pramana. (2019). Perbandingan Akurasi Naïve Bayes dan K-Nearest Neighbor pada Klasifikasi untuk Meramalkan Status Pekerjaan Alumni ITB STIKOM Bali. Jurnal Sistem Dan Informatika (JSI), 14(1), 16–22. https://doi.org/10.30864/jsi.v14i1.233
Noveandini, R., & Wulandari, M. S. (2019). Analisis Clustering K-Means Pada Pengelompokkan Hasil Tracer Study Sebagai Media Informasi Dalam Pengembangan Kurikulum Program Studi. Seminar Nasional Teknologi Informasi & Komunikasi (SeNTIK), 3(1), 133–141.
Noviyanto, H., & Mukti, B. (2022). Prediksi Kesiapan Kerja Mahasiswa menggunakan Algoritme K-Means dan C4.5. JOSTECH: Journal of Science and Technology, 2(2), 179–188. https://doi.org/10.15548/jostech.v2i2.4422
Rachmadiansyah, R., Rumlaklak, N. D., & Mauko, A. Y. (2022). Prediksi Masa Tunggu Kerja Alumni Menggunakan Naïve Bayes Classifier Pada Program Studi Ilmu Komputer Universitas Nusa Cendana. Jurnal Komputer Dan Informatika, 10(2), 143–150. https://doi.org/10.35508/jicon.v10i2.7426
Rahmadayanti, F., Anggraini, I., & Susanti, T. (2023). Pengklasterisasian Data Penyakit Hipertensi dengan Menggunakan Metode K-Means. Journal of Information System Research (JOSH), 4(2), 737–741. https://doi.org/10.47065/josh.v4i2.2905
Rezkika, F., Sari, B. N., & Irawan, A. S. Y. (2021). Klasifikasi Masa Tunggu Alumni Untuk Mendapatkan Pekerjaan Berdasarkan Kompetensi Menggunakan Algoritma C4.5 (Studi Kasus : Fasilkom Unsika). Progresif: Jurnal Ilmiah Komputer, 17(2), 95. https://doi.org/10.35889/progresif.v17i2.652
Shokrzade, A., Ramezani, M., Akhlaghian Tab, F., & Abdulla Mohammad, M. (2021). A novel extreme learning machine based kNN classification method for dealing with big data. Expert Systems with Applications, 183(December 2019), 1–18. https://doi.org/10.1016/j.eswa.2021.115293
Wang, H., Xu, P., & Zhao, J. (2022). Improved KNN algorithms of spherical regions based on clustering and region division. Alexandria Engineering Journal, 61(5), 3571–3585. https://doi.org/10.1016/j.aej.2021.09.004
Widaningsih, S. (2019). Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm. Jurnal Tekno Insentif, 13(1), 16–25. https://doi.org/10.36787/jti.v13i1.78
Widhiantoyo, A. (2021). Penerapan Algoritma Naïve Bayes Dengan Backward Elimination Untuk Prediksi Waktu Tunggu Alumni Mendapatkan Pekerjaan. JIKO (Jurnal Informatika Dan Komputer), 4(3), 145–151. https://doi.org/10.33387/jiko.v4i3.3272
Xu, Q., Ning, L., Yuan, T., & Wu, H. (2023). Application of data mining combined with power data in assessment and prevention of regional atmospheric pollution. Energy Reports, 9, 3397–3405. https://doi.org/10.1016/j.egyr.2023.02.016
Yahdin, S., Desiani, A., Gofar, N., & Agustin, K. (2021). Application of the Relief-f Algorithm for Feature Selection in the Prediction of the Relevance Education Background with the Graduate Employment of the Universitas Sriwijaya. Computer Engineering and Applications Journal, 10(2), 71–80. https://doi.org/10.18495/comengapp.v10i2.369
Yuliarina, A. N., & Hendry, H. (2022). Comparison of Prediction Analysis of Gofood Service Users Using the Knn & Naive Bayes Algorithm With Rapidminer Software. Jurnal Teknik Informatika (Jutif), 3(4), 847–856. https://doi.org/10.20884/1.jutif.2022.3.4.294
DOI: https://doi.org/10.31294/ijcit.v9i2.20705
##submission.copyrightStatement##
##submission.license.cc.by-sa4.footer##
P-ISSN: 2527-449X E-ISSN: 2549-7421
Statistik Pengunjung Jurnal IJCIT