Optimasi Algoritma Naïve Bayes dengan Menggunakan Algoritma Genetika untuk Prediksi Kesuburan (Fertility)

Duwi Cahya Putri Buani - STMIK Nusa Mandiri Jakarta

Abstract


Abstract - Level fertility (Fertility) in two decades has decreased, in several studies that have been published stating that the cause of the decline in fertility (fertility) is the environmental and lifestyle factors such as alcohol and cigarettes affect the level of quality seperma. This study aimed to test the ability of Naïve Bayes in making predictions. Naïve Bayes has some weaknesses, these weaknesses can be eliminated by performing optimization using Genetic Algorithms. Previous research using Naïve Bayes showed an accuracy rate of 97.66% after optimization by using the same data to optimize Naïve Bayes with Genetic Algorithm result increased to 99.33% accuracy.
Keywords: Algorithm Genetic, Fertility, Naïve Bayes.

Abstrak - Tingkat kesuburan (fertilitas) dalam dua dekade mengalami penurunan, dalam beberapa studi yang telah dipublikasikan menyatakan bahwa penyebab penurunan fertilitas (kesuburan) adalah faktor lingkungan dan gaya hidup seperti alkohol dan rokok mempengaruhi tingkat kualitas sperma. Penelitian ini bertujuan untuk menguji kemampuan Naïve Bayes dalam membuat prediksi. Naïve Bayes memiliki beberapa kelemahan, kelemahan ini dapat dihilangkan dengan melakukan optimasi menggunakan Algoritma Genetika. Penelitian sebelumnya menggunakan Naïve Bayes menunjukkan tingkat akurasi 97,66% setelah optimasi dengan menggunakan data yang sama untuk mengoptimalkan Naïve Bayes dengan Algoritma Genetika result meningkat menjadi akurasi 99,33%.
Kata Kunci: Algoritma Genetika, Kesuburan, Naïve Bayes.

Full Text:

PDF

References


Irvine DS.(1998). Epidemiology and aetiology of male infertility. Hum. Reprod.;Vol 13(1):33-44.

Irvine, D. S. (2000). Male reproductive health: Cause for concern? Andrologia, 32(4–5), 195–208.

Carlsen, E., Giwercman, A., Keiding, N., & Skakkebaek, N. E. (1992). Evidence for decreasing quality of semen during past 50 years. BMJ, 305(6854), 609–613.

Martini, A. C., Molina, R. I., Estofan, D., Senestrari, D., Fiol de Cuneo, M., & Ruiz, R. D. (2004). Effects of alcohol and cigarette consumption on human seminal quality. Fertility and Sterility, 82(2), 374–377.

WHO (1999). WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction (4th ed.). Published on behalf of the World Health Organization by Cambridge University Press, Cambridge, UK.

Rowe P.J., Comhaire F.H. (2000). WHO manual for the standardized investigation, diagnosis and management of the infertile male, Cambridge University Press

Kusrini., E. T. Luthfi. (2009). Algoritma Data Mining 1st ed. Yogyakarta, Indonesia: Andi.

Wahyuni, Diana Tri, Sutojo, T,Luthfiarta, Ardytha. (2014). Prediksi Hasil Pemilu Legislatif DKI Jakarta Menggunakan Naïve Bayes dengan Algoritma sebagai Fitur Seleksi.

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning and Tools. Burlington: Morgan Kaufmann Publisher.

Gorunescu, F. (2011). Data Mining Concepts, Model and Technique. Berlin: Springer.

Han, J., & Kamber, M. (2006). Data Mining Concepts and technique. San Francisco: Diane Cerra.

Bramer, Max. (2007). Principles of Data Mining.London: Springer. ISBN-10: 1-84628-765-0, ISBN-13: 978-1-84628-765-7.

N. A. Zaidi, J. Cerquides, M. J. Carman, and G.I.Webb.(2013). "Alleviating Naive Bayes Attribute Independence Assumption byAttributeWeighting," Journal of Machine Learning Research, no. 14, pp. 1947-1988.

Kusuma dewi, Sri. (2003). Artificial Intelligent.Yogyakarta : Graha Ilmu.

Zukhri, Zainudin.(2014). Algoritma Genetika Metode Komputasi untuk Menyelesaikan Maslah Optimasi. Yogyakarta: Andi Offset.

Suryanto, MT, Msc. (2007). Artificial Intelligent, Searching, Reasoning Planning dan Learning. Bandung: Informatika Bandung.

Anita, Desiani, Arhami Muhammad. (2006). Konsep Kecerdasan Buatan. Yogyakarta: Cv. Andi Offset.

Kurniadi, Hairil.(2014). Prediksi Tingkat Kesuburan(Fertility):STMIK Nusa Mandiri

Gourunescu dalam Widodo, Prabowo Pudjo. (2013). Penerapan Data Mining dengan Matlab.Bandung: Rekayasa Sains.

Bramer, Max. (2007). Principles of Data Mining.London: Springer. ISBN-10: 1-84628-765-0, ISBN-13: 978-1-84628-765-7.

Powers, D.M.W. (2011). Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation. Journal of Machine Learning Technologies, ISSN: 2229-3981 & ISSN: 2229-399X, Volume 2, Issue 1, 2011, pp-37-63.

Vercellis, Carlo. (2009). Business Intelligence: Data Mining and Optimization for Decision Making. United Kingdom: John Willey & Son

Anik Andriani, Sistem Prediksi Penyakit Diabetes Berbasis Decision Tree, Vol 1, No 1 (2013): Bianglala 2013




DOI: https://doi.org/10.31294/evolusi.v4i1.3397

ISSN: 2657-0793 (online). ISSN: 2338-8161 (print)

Published By LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License