Implementasi Algoritma Naïve Bayes Pada Data Set Hepatitis Menggunakan Rapid Miner

Deny Novianti

Abstract


One of the diseases anticipated by doctors is hepatitis. This is because if the patient is not detected from the beginning having hepatitis, then the disease will develop into liver cancer. It can be seen that cancer is one of the deadliest diseases in the world that there are no drugs used for healing. By utilizing this increasingly developing science, researchers try to predict or classify whether a patient has suffered from hepatitis sickness based on the results of tests that have been undertaken before. One data mining technique can be used to predict Hepatitis and the method used is Naive Bayes. The data used is sourced from the UCI Repository with the web address https://archive.ics.uci.edu/ml/datasets/Hepatitis . The amount of data available is 155 data with 123 patients with Life hepatitis and 32 patients with Die hepatitis. The attributes contained in this hepatitis dataset are: Age, Sex, Steroids, Antivirals, Fatigue, Malaise, Anorexia, Big Liver, Liver Firm, Spleen Palpable, Spiders, Ascites, Varices, Bilirubin, Alk Phosphate, Sgot, Albumin, Protime, Histology , and Class (predictive result attribute). From the results of the research that has been done, it can be concluded that the Naive Bayes method includes an accurate algorithm to predict because the results of accuracy using Rapid Miner show more than 50% which is equal to 76.77%. With the highest Precision Class results of 98.88% for "Life" predictions, and Class Recall of 96.88% for "Die" Predictions.

Full Text:

PDF

References


Amora, R., & Fauzy, A. (2016). PROSIDING SNIPS 2016 Implementasi Metode Naïve Bayes Dalam Mendiagnosis Penyakit Demam Dengue dan Demam Berdarah Dengue ( Studi kasus : RSUD R . Syamsudin , SH Kota Sukabumi ) PROSIDING SNIPS 2016, (August 2017), 646–655.

Andi Prastowo. (2012). Metode Penelitian Kualitatif dalam Perspektif Rancangan Penelitian. Yogyakarta.

Artaye, K. (2015). International Conference On Information Technology And Business ISSN 2460-7223 IMPLEMENTATION OF NAÏVE BAYES CLASSIFICATION METHOD TO PREDICT GRADUATION TIME OF IBI DARMAJAYA SCHOLAR Z . A . Pagar Alam Street No . 93 Bandar Lampung, (August), 284–290.

Bari, M., Sitorus, S. H., & Ristian, U. (2018). IMPLEMENTASI METODE NAÏVE BAYES PADA APLIKASI PREDIKSI PENYEBARAN WABAH PENYAKIT ISPA ( Studi Kasus : Wilayah Kota Pontianak ), 06(03), 205–214.

Big, I., & Watching, B. (1999). An Introduction to Data Mining The CRISP-DM. https://doi.org/http://dx.doi.org/10.18637/jss.v016.b01

Daftar Pustaka 1 infodatin-hepatitis.pdf. (n.d.). https://doi.org/24427659

Deskriptif, P., & Jakarta, M. A. N. (2011). Diagnosis Kesulitan Belajar Matematika Siswa Dan Solusinya Dengan Pembelajaran Remedial 2011 M / 1432 H.

Gorunescu, F. (2011). Data Mining: Concepts and Techniques. Verlag berlin Heidelberg: Springer.

I, B. R. C. T., Gafar, A. A., Fajriani, N., Ramdani, U., Uyun, F. R., P, Y. P., & Ransi, N. (2017). Implemetasi k-means clustering pada rapidminer untuk analisis daerah rawan kecelakaan. Seminar Nasional Riset Kuantitatif Terapan, (April), 58–62.

Informatika, T., Malikussaleh, U., & Utara, A. (2014). PENERAPAN ALGORITMA NAIVE BAYES, 8(1), 884–898.

Jananto, A. (2013). Algoritma Naive Bayes untuk Mencari Perkiraan Waktu Studi Mahasiswa. Teknologi Informasi, 18(1), 9–16.

Larose, D. T. (2005). Discovering Knowledge in Databases. New Jersey: John Willey & Sons Inc.

Prasetyo, E. (2012). Data Mining: Konsep Dan Aplikasi Mengunakan Matlab.

Prayoga, N. D., Hidayat, N., & Dewi, R. K. (2018). Sistem Diagnosis Penyakit Hati Menggunakan Metode Naïve Bayes, 2(8), 2666–2671.

Putra, A. E., Hidayat, N., & Cholissodin, I. (2018). Implementasi Metode Bayesian Network Untuk Diagnosis Penyakit Kambing ( Studi Kasus : UPTD Pembibitan Ternak dan Hijauan Makanan Ternak Singosari Malang ), 2(9), 3032–3042.

Sabransyah, M., Nasution, Y. N., & Tisna, D. (2017). Aplikasi Metode Naive Bayes dalam Prediksi Risiko Penyakit Jantung Naive Bayes Method for a Heart Risk Disease Prediction Application. Jurnal EKSPONENSIAL, 8, 111–118.

Santosa, B. (2007). Data Mining: Teknik Pemanfaatan Data untukKeperluan Bisnis.

Septiani, W. D. (2017). Komparasi Metode Klasifikasi Data Mining Algoritma C4.5 Dan Naive Bayes Untuk Prediksi Penyakit Hepatitis. Jurnal Pilar Nusa Mandiri, 13(1), 76–84.

Sugiyono. (n.d.). Metode Penelitian Kuantitatif, Kualitatif, dan R&D.




DOI: https://doi.org/10.31294/p.v21i1.4979

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Dewi Sartika No. 289, Cawang, Jakarta Timur Telp : 021-8010836, ext. 202
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License