ANALISA KOMPARASI NEURAL NETWORK BACKPROPAGATION DAN MULTIPLE LINEAR REGRESSION UNTUK PERAMALAN TINGKAT INFLASI

Amrin Amrin

Abstract


The inflation rate can not be underestimated in a country's economic system and businesses in general. If inflation can be predicted with high accuracy, of course, can be used as the basis of government policy making in anticipation of future economic activity. In this study will be used back propagation neural network method and multiple linear regression method to predict the monthly inflation rate in Indonesia, then compare which method is the better. The data used comes from the central statistical agency in 2006-2015, which is 80% as training data and 20% as testing data. In the results of the data analysis is concluded that the performance of multiple linear regression is better than back propagatin neural network, with a mean absolute deviation (MAD) is 0.0380, a mean square error (MSE) is 0.0023, and a  Root Mean Square Error (RMSE) is 0.0481.

Keywords: Inflation, neural network backpropagation, multiple linear regression, mean square error.

Full Text:

PDF

References


Badan Pusat Statistik (BPS). 2015. Inflasi, Diunduh pada tanggal 03 Desember 2015.

Han, J.,&Kamber, M. (2006).Data Mining Concept and Tehniques.San Fransisco: Morgan Kauffman.

Gorunescu, Florin (2011). Data Mining: Concepts, Models, and Techniques. Verlag Berlin Heidelberg: Springer.

Sumathi, & S., Sivanandam, S.N. (2006). Introduction to Data Mining and its Applications. Berlin Heidelberg New York: Springer.

Witten, I. H., Frank, E., & Hall, M. A. (2011).Data Mining: Practical Machine Learning and Tools. Burlington: Morgan Kaufmann Publisher.

Kusumadewi, Sri (2010). Pengantar Jaringan Syaraf Tiruan. Yogyakarta.Teknik Informatika FT UII.

Alpaydin, Ethem. (2010). Introduction to Machine Learning. London: The MIT Press.

Vercellis, Carlo (2009). Business Intelligent: Data Mining and Optimization for Decision Making. Southern Gate, Chichester, West Sussex: John Willey & Sons, Ltd..

Larose, D. T. (2005).Discovering Knowledge in Data. New Jersey: John Willey & Sons, Inc.

Shukla, A., Tiwari, R., & Kala, R. (2010). Real Life Applications of Soft Computing. United States of America on: Taylor and Francis Group, LLC.

Maimon, Oded&Rokach, Lior.(2005). Data Mining and Knowledge Discovey Handbook. New York: Springer.

Sugiyono, (2009). Metode Penelitian Bisnis. Bandung: Alfabeta.




DOI: https://doi.org/10.31294/jtk.v2i2.1591

ISSN2550-0120

 dipublikasikan oleh LPPM Universitas Bina Sarana Informatika Jakarta

Jl. Dewi Sartika No. 289, Cawang, Jakarta Timur Telp : 021-8010836
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License