ANALISA PERBANDINGAN METODE SEGMENTASI CITRA PADA CITRA MAMMOGRAM

Toni Arifin

Sari


Abstract

Cancer is a desaeas with a high prevalence in the world. As many 8,2 million people died of cancer. The prevalence of cancer was happened in woman that is breast cancer. Breast cancer is a malignancy derived from grandular cells, gland duct and supporting the breast tissues. There are many ways of detecting the presence of breast cancer which one is mammography test that aims to examine the human breast using low-dose X-rays. Observation mammography results in the form of mammogram images can be done with image processing, in this way the process of observation is not take a long time and error in the observation can be reduced. One of the process image processing is image segmentation, the step of image segmentation is an important in image analysis there force is needed method in process of image sementation. This observation is aims to analyze comparison of two image segmentation methods of mammogram images that is using Watershed method and Otsu method after that it will see the quality of image by calculating the signal to noise ratio and timing run of each method. The result of this observation is showed that the signal to noise ratio on the Watershed method 7,475 dB and Otsu method 6.197 dB and the conclution is Watershed method is better than Otsu method, whereas if viewed the timing run Watershed method 0,016 seconds is more faster than Otsu method.


Teks Lengkap:

PDF

Referensi


Abdallah, & Hassan. (2013). Segmentation of Brain in MRI Images Using Watershed-based Technique. International Journal of Science and Research (IJSR), 683-688.

Adipranata, R. (2006). Kombinasi metode Morphological gradient dan transformasi Watershed pada proses segmentasi citra digital. universitas kristen petra.

Apriliani, D., & Murinto. (2013). Analisis Perbandingan Teknik Segmentasi Citra Digital Menggunakan Metode Level Set Chan & Vese Dan Lankton. Jurnal Informatika, 802-810.

Aristyagama, Y. H. (2016). Pengenalan Karakter Sintaktik menggunakan Algoritma Otsu dan Zhang-Suen. researchgate.

Belaid, J. L., & Mourou, W. (2009). Image Segmentation: A Watershed Transformation Algorithm. Image Anal Stereol, 93-102.

Cahyan, P. A., Aswin, M., & Mustofa, A. (2013). Segmentasi citra digital dengan menggunakan algoritma Watershed dan lowpass filter sebagai proses awal.

Hamarneh, G., & Li, X. (2009). Watershed segmentation using prior shape and appearance knowledge. Image and vison Computing, 59-68.

Kementrian Kesehatan Republik Indonesia. (2015). Retrieved July 30, 2016, from www.depkes.go.id: http://www.depkes.go.id/resources/download/pusdatin/infodatin/infodatin-kanker.pdf

Kurniawati, A. R. (2009). Kombinasi Morphological Gradient Dan Transformasi Watershed Sebagai Metode Deteksi Kanker Payudara Berdasarkan Citra Mammogram. Teknik Telekomunikasi, Fakultas Teknik Elektro, Universitas Telkom.

Mahmoudi, R., & Akil, M. (2011). Analyses of the Watershed Transform. International Journal of Image Processing (IJIP), 521-541.

Muriliasari, R., & Murinto. (2013). Analisis Perbandingan Metode Li Dan Chan-Vese Pada Proses Segmentasi Citra Digital. Jurnal Sarjana Teknik Informatika, Universitas Ahmad Dahlan.

Mammoimage. (2015). Retrieved Agustus 1, 2016, from http://www.mammoimage.org/databases/

Putra, D. (2004). BINERISASI CITRA TANGAN DENGAN METODE OTSU. jurnal Universitas Udayana, 11-13.

Safi'i, S. I., Wahyuningrum, & Muntasa. (2015). Segmentasi Obyek Pada Citra Digital Menggunakan Metode Otsu Thresholding. Jurnal Informatika, 1-8.

Wijayanti, Y., Amaliah, B., & Yuniarti, A. (2010). Implementasi Segmentasi Gambar Menggunakan Domain Neutrosophic Dan Metode Watershed. Jurusan Teknik Informatika, Fakultas Teknologi Informasi, Institut Teknologi Sepuluh Nopember, Surabaya, 1-8.

World Health Organization (WHO). (2014). Retrieved July 22, 2016, from Cancer: http://www.who.int/mediacentre/factsheets/fs297/en/




DOI: https://doi.org/10.31311/ji.v3i2.1169



 dipublikasikan oleh LPPM UBSI
Jl. Kamal Raya No. 18 Cengkareng, Jakarta Barat